
NIVI5 GEOSPATIAL

WI 12 County 3 B22 Green
LIDAR PROCESSING
REPORT

Project ID: 230110 Work Unit: 300206

Prepared for:

2023

Submitted: August 31, 2023

Prepared by:

N/V/5 GEOSPATIAL

National Map Help Desk: tnm help@usgs.gov

Contents

1. Summary / Scope	
1.1. Summary	1
1.2. Scope	
1.3. Coverage	
1.4. Duration	
1.5. Issues	
2. Planning / Equipment	4
2.1. Flight Planning	4
2.2. Lidar Sensor	4
2.3. Aircraft	6
2.4. Time Period	7
3. Processing Summary	8
3.1. Flight Logs	8
3.2. Lidar Processing	9
3.3. LAS Classification Scheme	10
3.4. Classified LAS Processing	
3.5. Hydro-Flattened Breakline Processing	11
3.6. Hydro-Flattened Raster DEM Processing	12
3.7. Intensity Image Processing	12
3.8. Swath Separation Raster Processing	12
3.9. Maximum Surface Height Raster Processing	13
3.10. Point Density	13
4. Project Coverage Verification	
5. Geometric Accuracy	18
5.1. Horizontal Accuracy	18
5.2. Relative Vertical Accuracy (Interswath Precision)	19
5.3. Intraswath Precision (Smooth Surface Precision)	20
Project Report Appendices	xxi
Appendix A	xxii
Flight Logs	xxii
Appendix B	xxiii
SRET and POSPAC Reports	vviii

List of Figures

Figure 1. Work Unit Boundary	
Figure 2. Riegl VQ1560ii Lidar Sensor	
Figure 3. NV5 Geospatial's Aircraft	
Figure 4. Lidar Tile Layout	
Figure 5. Lidar Coverage	
List of Tables	
Table 1. Originally Planned Lidar Specifications	
Table 2. Lidar System Specifications	
Table 3 IAS Classifications	10

List of Appendices

Appendix A: Flight Logs

Appendic B: SBET and POSPAC Report

1. Summary / Scope

1.1. Summary

This report contains a summary of the WI_12County_3_B22, Work Unit 300206 lidar acquisition task order, issued by USGS under their Contract 140G0221D0012 on March 28, 2022. The task order yielded a work unit area covering 590 square miles over Wisconsin at Quality Level 2. The intent of this document is only to provide specific validation information for the data acquisition/collection, processing, and production of deliverables completed as specified in the task order.

1.2. Scope

Aerial topographic lidar was acquired using state of the art technology along with the necessary surveyed ground control points (GCPs) and airborne GPS and inertial navigation systems. The aerial data collection was designed with the following specifications listed in Table 1 below.

Table 1. Originally Planned Lidar Specifications

Average Point Density	Flight Altitude (AGL)	Field of View	Minimum Side Overlap	RMSEz
2 pts / m2	2300 m	58.5°	20%	≤ 10 cm

1.3. Coverage

The work unit boundary covers 590 square miles over Green County, Wisconsin. Work unit extents are shown in Figure 1.

1.4. Duration

Lidar data was acquired from April 11, 2022 to April 12, 2022 in 2 total lifts. See "Section: 2.4. Time Period" for more details.

1.5. Issues

There were no issues to report.

WI_12County_3_B22 Work Unit 300206

Projected Coordinate System: Wisconsin Coordinate Reference System - Green & Lafayette Horizontal Datum: NAD83 (2011)

Vertical Datum: NAVD88 (GEOID 18)

	Units: Survey Feet
Lidar Point Cloud	Classified Point Cloud in .LAS 1.4 format
Rasters	 2-foot Hydro-flattened Bare Earth Digital Elevation Model (DEM) in GeoTIFF format 2-foot Intensity images in GeoTIFF format 4-foot Maximum Surface Height Raster 4-foot Swath Seperation Images
Vectors	Shapefiles (*.shp) Project Boundary Lidar Tile Index Geodatabase (*.gdb) Continuous Hydro-flattened Breaklines Flightlines Swath
Reports	Reports in PDF format • Focus on Delivery • Survey Report • Processing Report
Metadata	XML Files (*.xml) Breaklines Classified Point Cloud DEM Intensity Imagery

WI_12County_3_B22 Work Unit 300206 Boundary

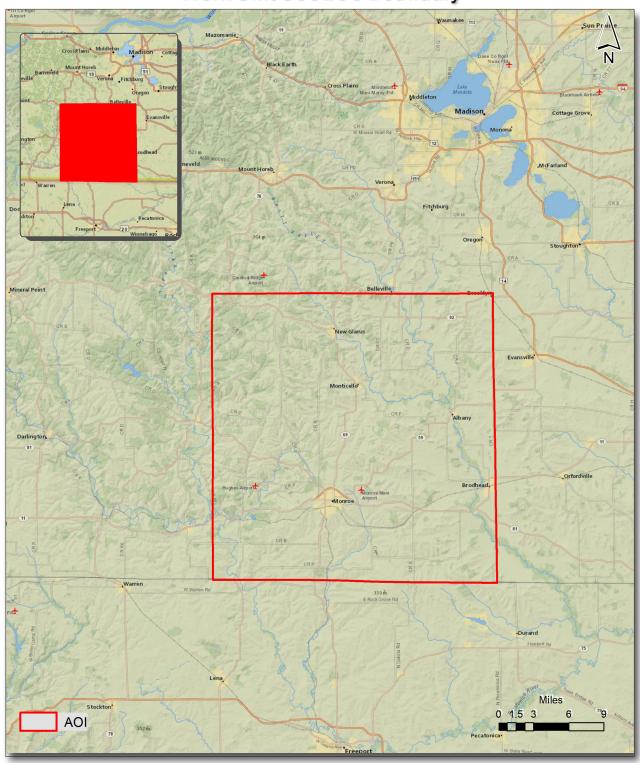


Figure 1. Work Unit Boundary

2. Planning / Equipment

2.1. Flight Planning

Flight planning was based on the unique project requirements and characteristics of the project site. The basis of planning included: required accuracies, type of development, amount / type of vegetation within project area, required data posting, and potential altitude restrictions for flights in project vicinity.

Detailed project flight planning calculations were performed for the project using RiPARAMETER planning software.

2.2. Lidar Sensor

NV5 Geospatial utilized Riegl VQ1560ii lidar sensors (Figure 2), serial number(s) 3062 and 3543, for data acquisition.

The Riegl 1560ii system is a dual channel waveform processing airborne scanning system. It has a laser pulse repetition rate of up to 4 MHz resulting in up to 2.66 million measurements per second. The system utilizes a Multi-Pulse in the Air option (MPIA) and an integrated IMU/GNSS unit.

A brief summary of the aerial acquisition parameters for the project are shown in the lidar System Specifications in Table 2.

Table 2. Lidar System Specifications

		Riegl VQ1560ii (SN3062)
Terrain and	Flying Height	2300 m
Aircraft Scanner	Recommended Ground Speed	160 kts
	Field of View	60°
Scanner	Scan Rate Setting Used	100 lps
Laser	Laser Pulse Rate Used	500 kHz
Laser	Multi Pulse in Air Mode	yes
Carraga	Full Swath Width	3147 m
Coverage	Line Spacing	2517 m
Point Spacing	Average Point Spacing	0.71 m
and Density	Average Point Density	2 pts / m²

Figure 2. Riegl VQ1560ii Lidar Sensor

2.3. Aircraft

All flights for the project were accomplished through the use of customized aircraft. Plane type and tail numbers are listed below.

Lidar Collection Planes

• Piper PA-31, Tail Number(s): C-GAYY

These aircraft provided an ideal, stable aerial base for lidar acquisition. These aerial platforms have relatively fast cruise speeds, which are beneficial for project mobilization / demobilization while maintaining relatively slow stall speeds, proving ideal for collection of high-density, consistent data posting using a state-of-the-art lidar system. NV5 Geospatial's operating aircraft can be seen in Figure 3 below.

Figure 3. NV5 Geospatial's Aircraft

2.4. Time Period

Project specific flights were conducted between April 11, 2022 and April 12, 2022. Two aircraft lifts were completed. Accomplished lifts are listed below.

Lift	Start UTC	End UTC
04112022A (SN3062,C-GAYY)	4/11/2022 4:15:18 PM	4/11/2022 8:23:56 PM
04122022A (SN3062,C-GAYY)	4/12/2022 1:28:46 PM	4/12/2022 2:10:59 PM

3. Processing Summary

3.1. Flight Logs

Flight logs were completed by Lidar sensor technicians for each mission during acquisition. These logs depict a variety of information, including:

- Job / Project #
- Flight Date / Lift Number
- FOV (Field of View)
- Scan Rate (HZ)
- Pulse Rate Frequency (Hz)
- Ground Speed
- Altitude
- Base Station
- PDOP avoidance times
- Flight Line #
- Flight Line Start and Stop Times
- Flight Line Altitude (AMSL)
- Heading
- Speed
- Returns
- Crab

Notes: (Visibility, winds, ride, weather, temperature, dew point, pressure, etc). Project specific flight logs for each sortie are available in Appendix A.

3.2. Lidar Processing

Applanix + POSPac software was used for post-processing of airborne GPS and inertial data (IMU), which is critical to the positioning and orientation of the lidar sensor during all flights. Applanix POSPac combines aircraft raw trajectory data with stationary GPS base station data yielding a "Smoothed Best Estimate Trajectory" (SBET) necessary for additional post processing software to develop the resulting geo-referenced point cloud from the lidar missions.

During the sensor trajectory processing (combining GPS & IMU datasets) certain statistical graphs and tables are generated within the Applanix POSPac processing environment which are commonly used as indicators of processing stability and accuracy. This data for analysis include: max horizontal / vertical GPS variance, separation plot, altitude plot, PDOP plot, base station baseline length, processing mode, number of satellite vehicles, and mission trajectory.

Point clouds in flightline swath format were created using the RiPROCESS software. The generated point cloud is the mathematical three dimensional composite of all returns from all laser pulses as determined from the aerial mission. Each flightline swath point cloud was calibrated using Strip Align software that corrects systematic geometric errors and improves the relative and absolute accuracy of the flightline swath point cloud. The calibrated point cloud swaths were imported into GeoCue distributive processing software and the imported data was then tiled so further processing could take place in TerraScan software. Using TerraScan, the vertical accuracy of the surveyed ground control was tested and any vertical bias was removed from the data. TerraScan and TerraModeler software packages were then used for automated data classification and manual cleanup. The data were manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler.

DEMs and Intensity Images are then generated using proprietary software. In the bare earth surface model, above-ground features are excluded from the data set. Global Mapper is used as a final check of the bare earth dataset.

Finally, proprietary software is used to perform statistical analysis of the LAS files.

Software	Version
Applanix + POSPac	8.6
RiPROCESS	1.8.6
GeoCue	2020.1.22.1
Global Mapper	19.1;20.1
Microstation Connect	10.16.02.34
TerraModeler	21.008
TerraScan	21.016
StripAlign	2.21

3.3. LAS Classification Scheme

The classification classes are determined by Lidar Base Specifications 2021, Revision A and are an industry standard for the classification of lidar point clouds. All data starts the process as Class 1 (Unclassified), and then through automated classification routines, the classifications are determined using TerraScan macro processing.

The classes used in the dataset are as follows and have the following descriptions:

Table 3. LAS Classifications

	Classification Name	Description
1	Processed, but Unclassified	Laser returns that are not included in the bare earth class, or any other project classification
2	Bare earth	Laser returns that are determined to be bare earth using automated and manual cleaning algorithms
7	Low Noise	Laser returns that are often associated with scattering from reflective surfaces, or artificial points below the bare earth surface
9	Water	Laser returns that are found inside of hydro features
17	Bridge Deck	Laser returns falling on bridge decks
18	High Noise	Laser returns that are often associated with birds or artificial points above the bare earth surface
20	Ignored Ground	Bare earth points that fall within the given threshold of a collected hydro feature.
21	Snow	Bare earth points that fall on snow, where identifiable
22	Temporal Exclusion	Points that are excluded due to differences in collection dates

3.4. Classified LAS Processing

The bare earth surface is then manually reviewed to ensure correct classification on the Class 2 (Ground) points. After the bare- earth surface is finalized, it is then used to generate all hydro-breaklines through headsup digitization.

All ground (ASPRS Class 2) lidar data inside of the Lake Pond and Double Line Drain hydro flattening breaklines were then classified to water (ASPRS Class 9) using proprietary tools. A buffer of 3 feet/1 meter was also used around each hydro flattened feature to classify these ground (ASPRS Class 2) points to Ignored ground (ASPRS Class 20). All Lake Pond Island and Double Line Drain Island features were checked to ensure that the ground (ASPRS Class 2) points were reclassified to the correct classification after the automated classification was completed.

Any noise that was identified either through manual review or automated routines was classified to the appropriate class (ASPRS Class 7 and/or ASPRS Class 18) followed by flagging with the withheld bit.

All data was manually reviewed and any remaining artifacts removed using functionality provided by TerraScan and TerraModeler. Global Mapper is used as a final check of the bare earth dataset. GeoCue was then used to create the deliverable industry-standard LAS files for all point cloud data. NV5 Geospatial's proprietary software was used to perform final statistical analysis of the classes in the LAS files, on a per tile level to verify final classification metrics and full LAS header information.

3.5. Hydro-Flattened Breakline Processing

Using heads-up digitization, all Lake-Ponds, Double Line Drains, and Islands are manually collected that are within the project size specification. This includes Lake-Ponds greater than 2 acres in size, Double Line Drains with greater than a 100 foot nominal width, and Islands greater than 1 acre in size within a collected hydro feature. Lidar intensity imagery and bare-earth surface models are used to ensure appropriate and complete collection of these features.

Elevation values are assigned to all collected hydro features via NV5 Geospatial's proprietary software. This software sets Lake-Ponds to an appropriate, single elevation to allow for the generation of hydro-flattened digital elevation models (DEM). Double Line Drain elevations are assigned based on lidar elevations and surrounding terrain feature to ensure all breaklines match the lidar within acceptable tolerances. Some deviation is expected between breakline and lidar elevations due to monotonicity, connectivity, and flattening rules that are enforced on the breaklines. Once complete, horizontal placement, and vertical variances are reviewed, all breaklines are evaluated for topological consistency and data integrity using a combination of proprietary tools and manual review of hydro-flattened DEMs.

Breaklines are combined into one seamless shapefile, clipped to the project boundary, and imported into an Esri file geodatabase for delivery.

3.6. Hydro-Flattened Raster DEM Processing

Hydro-Flattened DEMs (topographic) represent a lidar-derived product illustrating the grounded terrain and associated breaklines (as described above) in raster form. NV5 Geospatial's proprietary software was used to take all input sources (bare earth lidar points, bridge and hydro breaklines, etc.) and create a Triangulated Irregular Network (TIN) on a tile-by-tile basis. Data extending past the tile edge is incorporated in this process so that proper triangulation can occur. From the TIN, linear interpolation is used to calculate the cell values for the raster product. The raster product is then clipped back to the tile edge so that no overlapping cells remain across the project area. A 32-bit floating point GeoTIFF DEM was generated for each tile with a pixel size of 2-foot. NV5 Geospatial's proprietary software was used to write appropriate horizontal and vertical projection information as well as applicable header values into the file during product generation. Each DEM is reviewed in Global Mapper to check for any surface anomalies and to ensure a seamless dataset. NV5 Geospatial ensures there are no void or no-data values (-999999) in each derived DEM. This is achieved by using propriety software checking all cell values that fall within the project boundary. NV5 Geospatial uses a proprietary tool called FOCUS on Delivery to check all formatting requirements of the DEMs against what is required before final delivery.

3.7. Intensity Image Processing

Intensity images represent reflectivity values collected by the lidar sensor during acquisition. Proprietary software generates intensity images using first returns and excluding those flagged with a withheld bit. Intensity images are linearly scaled to a value range specific to the project area to standardize the images and reduce differences between individual tiles. Appropriate horizontal projection information as well as applicable header values are written during product generation.

3.8. Swath Separation Raster Processing

Swath Separation Images are rasters that represent the interswath alignment between flight lines and provide a qualitative evaluation of the positional quality of the point cloud. NV5 Geospatial proprietary software generated 4-foot raster images in GeoTIFF format using last returns, excluding points flagged with the withheld bit, and using a point-in-cell algorithm. Images are generated with a 75% intensity opacity and (4) absolute 8-cm intervals, see below for interval coloring. Intensity images are linearly scaled to a value range specific to the project area to standardize the images and reduce differences between individual tiles. Appropriate horizontal projection information as well as applicable header values are written to the file during product generation. NV5 Geospatial uses a proprietary tool called FOCUS on Delivery to check all formatting requirements of the images against what is required before final delivery.

3.9. Maximum Surface Height Raster Processing

Maximum Surface Height rasters (topographic) represent a lidar-derived product illustrating natural and built-up features. NV5 Geospatial's proprietary software was used to take all classified lidar points, excluding those flagged with a withheld bit, and create a raster on a tile-by-tile basis. Data extending past the tile edge is incorporated in this process so that proper gridding can occur. The raster is created by laying a 4-foot DEM cell size over the area and assigning the values to cells by using the maximum lidar point that intersects that grid cell. The raster product is then clipped back to the tile edge so that no overlapping cells remain across the project area. A 32-bit floating point GeoTIFF was then generated for each tile with a pixel size of 4-foot. There is no interpolation type being used in creating the raster product. NV5 Geospatial's proprietary software was used to write appropriate horizontal and vertical projection information as well as applicable header values into the file during product generation. Each maximum surface height raster is reviewed in Global Mapper to check for any anomalies and to ensure a seamless dataset. NV5 Geospatial uses a proprietary tool called FOCUS on Delivery to check all formatting requirements of the DEMs against what is required before final delivery.

3.10. Point Density

The acquisition parameters were designed to acquire an average first-return density of 2 points/m2. First return density describes the density of pulses emitted from the laser that return at least one echo to the system. Multiple returns greater than 1 from a single pulse were not considered in first return density analysis. Some types of surfaces (e.g., breaks in terrain, water, and steep slopes) may have returned fewer pulses than originally emitted by the laser. First returns typically reflect off the highest feature on the landscape within the footprint of the pulse. In forested or urban areas, the highest feature could be a tree, building or power line, while in areas of unobstructed ground, the first return will be the only echo and represents the bare earth surface.

The density of ground-classified lidar returns was also analyzed for this project. Terrain character, land cover, and ground surface reflectivity all influenced the density of ground surface returns. In vegetated areas, fewer pulses may penetrate the canopy, resulting in lower ground density.

The average first-return density of lidar data for the project was 4.85 points/m2) while the average ground classified density was 4.64 points/m2). The statistical and spatial distributions of first return densities and classified ground return densities per 100 m x 100 m cell are portrayed in Figures 4 and 5.

WI_12County_3_B22 Work Unit 300206 First Return Density

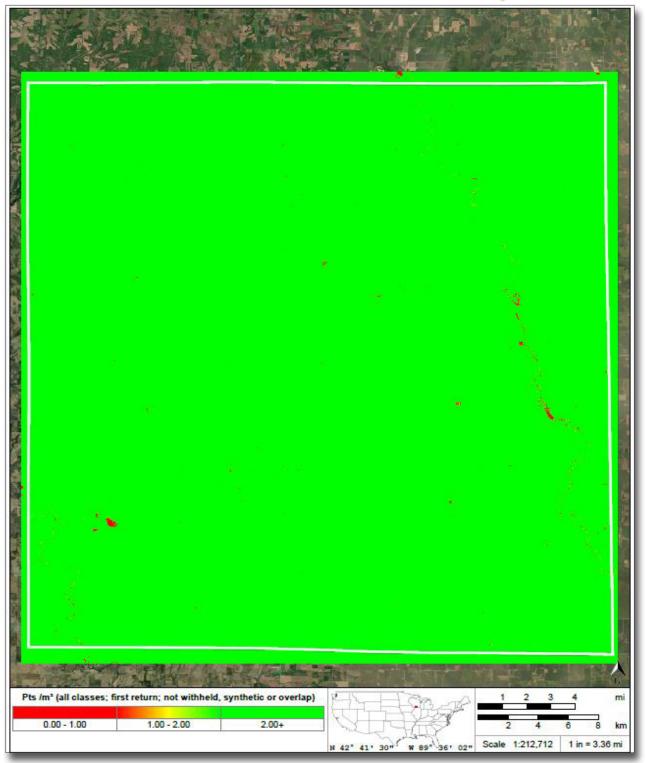


Figure 4. First Return Point Density

WI_12County_3_B22 Work Unit 300206 Ground Density

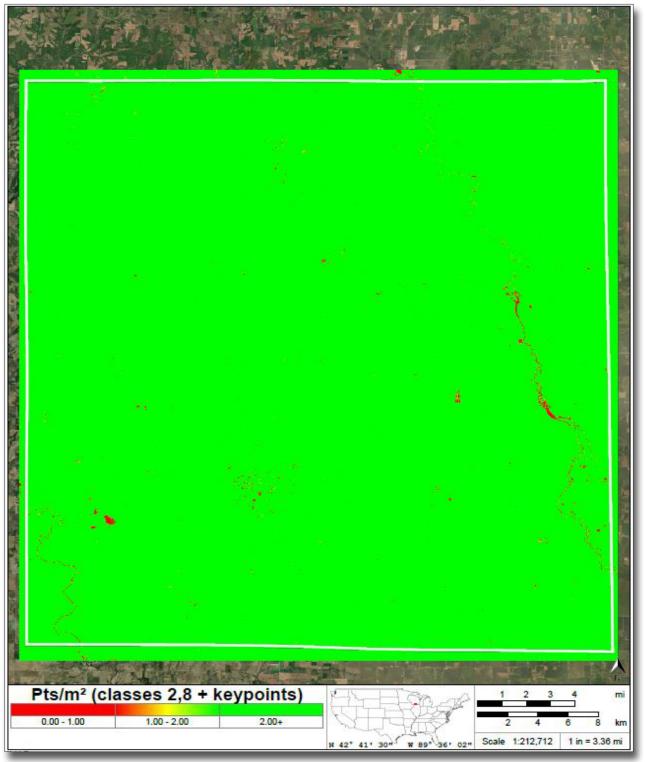


Figure 5. Ground Density

WI_12County_3_B22 Work Unit 300206 Tile Layout

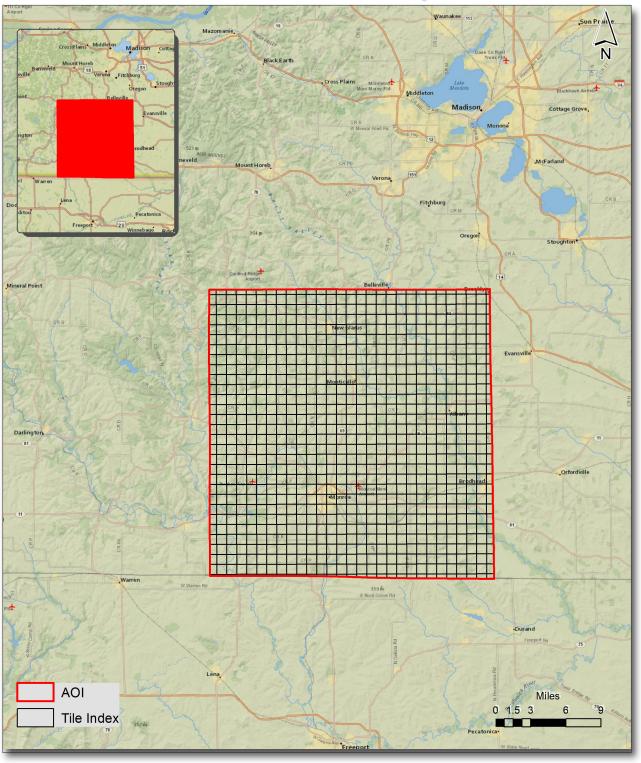


Figure 6. Lidar Tile Layout

4. Project Coverage Verification

A proprietary tool (FOCUS on Flight) produces grid-based polygons of each flightline, depicting exactly where lidar points exist. These swath polygons are reviewed against the project boundary to verify adequate project coverage. Please refer to Figure 5.

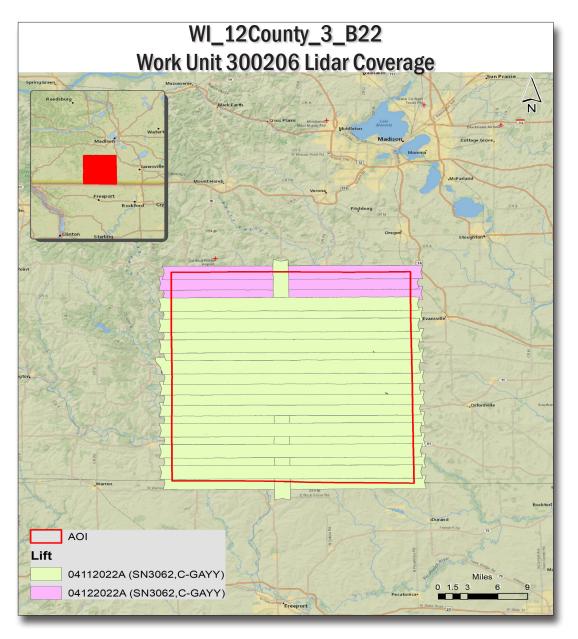
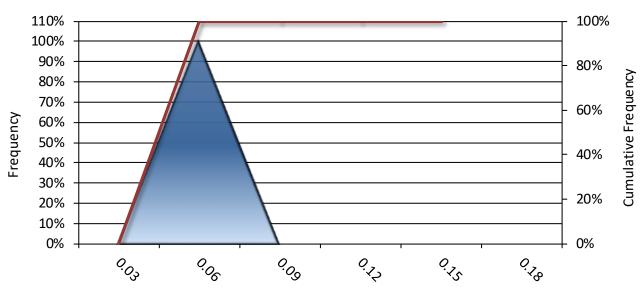


Figure 7. Lidar Coverage

5. Geometric Accuracy

5.1. Horizontal Accuracy

Lidar horizontal accuracy is a function of Global Navigation Satellite System (GNSS) derived positional error, flying altitude, and INS derived attitude error. The obtained RMSE_r value is multiplied by a conversion factor of 1.7308 to yield the horizontal component of the National Standards for Spatial Data Accuracy (NSSDA) reporting standard where a theoretical point will fall within the obtained radius 95% of the time. Based on a flying altitude of 2300 meters, an IMU error of 0.002 decimal degrees, and a GNSS positional error of 0.015 meters, this project was compiled to meet 0.25 meter horizontal accuracy at the 95% confidence level. A summary is shown below.


Horizonta	l Accuracy
DAACE	0.47 ft
RMSE _r	0.14 m
466	0.82 ft
ACC _r	0.25 m

5.2. Relative Vertical Accuracy (Interswath Precision)

Relative vertical accuracy refers to the internal consistency of the data set as a whole: the ability to place an object in the same location given multiple flight lines, GPS conditions, and aircraft attitudes. When the lidar system is well calibrated, the swath-to-swath vertical divergence is low (<0.10 meters). The relative vertical accuracy was computed by comparing the ground surface model of each individual flight line with its neighbors in overlapping regions. The average (mean) line to line relative vertical accuracy for the WI_12County_3_B22 project was 0.040 feet (0.012 meters). A summary is shown below.

Relative Vert	ical Accuracy
Sample	25 flight line surfaces
Average	0.040 ft
Average	0.012 m
Median	0.050 ft
Median	0.015 m
DNACE	0.050 ft
RMSE	0.015 m
Standard Davistics (1g)	0.002 ft
Standard Deviation (1σ)	0.000 m
1.057	0.003 ft
1.96σ	0.001 m

Wisconsin 12 County - Green, Wisconsin Relative Vertical Accuracy (ft)
Total Compared Points (n = 2,474,227,248)

5.3. Intraswath Precision (Smooth Surface Precision)

Intraswath Precision (smooth surface precision) is the measure of reliability of the lidar point cloud elevations along a planar surface. This measurement is performed on hard surfaces against a single flightline. NV5 digitized several large parking lots as polygons across the project area. These polygons were then used to calculate precision on a single FL basis using the below formula:

Precision = Range – (Slope x Cellsize x 1.414)

Range – Is the difference between the highest and lowest lidar points in each cell Slope – is the maximum slope of the cell to its 8 neighbors

Cellsize – is set to the ANPS, rounded up to the next integer, and then doubled

NV5 calculated the RMSDz to be 3.7 cm, minimum slope-corrected range to be 0 cm, and the maximum slope-corrected range to be 16 cm.

Project Report Appendices

The following section contains the appendices as listed in the WI_12County_3_B22 Lidar Project Report.

Appendix A

Flight Logs

Flig	
-	
00	
_	
•	
_	
Day	
<u>a</u>	
\Box	
_	
an	
<u>.:0</u>	
=	

Flight A

LIDAR Flight Log

DateApril 10th, 2022AircraftC-GAYYProject 3237_NV5_WI3DEP_QL2PilotP. GoodmanLocationKMSNOperatorR. GemmelMission Objective

System	Reigl VQ1560ii	
Unit	S2223062	
NMI	Applanix AP60	
GPS Rx	Trimble GNSS17	
Scanner 1 Drive	1 Drive A1	
Scanner 2 Drive	2 Drive A2	

Notes	
dditional	
<u> </u>	_

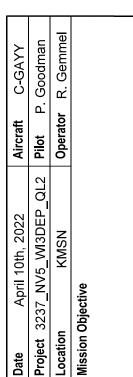
A I R B O R N E I M G I M G A Clean Harbors Company

GPS trajectory Files: ALS.010-061
-Riaquire froze on 2089, curious if it's just swatch image that was effected?
-Will confirm maintenance scheduling.

Time to next maintenance: ??? ○ 50 hr ◎ 100 hr

	Aircraft Block Time	
Engine On 13:54 Takeoff 14:14	Takeoff 14:14	AGL Heigh
Engine Off 20:23 Landing 20:14	Landing 20:14	Target Spe
Total 6.5 hrs	Total 6.0 hrs	Laser Curr

	2	ISSIO	Mission Plan	
AGL Height	2300	ш	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100	l %	٠٥٠	sbep ° 09


Static	Alignment	Pre Mission	Post Mission
G	Start	14:04	20:17
GPS Time	End	14:09	20:22

	LiDAR	Flight	GPS	GPS Time	Line	Line Aborted	Mission ID	
Flight Line	File Name	Direction	Start	End	Time	nmi to End	Time Stamp 220410	Comments
							220410_140417	
Figure 8		8	14:31	14:35				8150 ft +/-
2100 (X-Tie)	622210001	182.7	14:39	14:51			220410_143907	8107 ft
2099	622210002	092.4	14:57	15:07			145722	8242 ft
2098	622210003	273.1	15:11	15:22			151109	8245 ft
2097	622210004	092.3	15:25	15:35			152502	8248 ft
2096	622210005	273.2	15:38	18:49			153832	8255 ft
2095	622210006	092.3	15:52	16:02			155235	8268 ft
2094	622210007	237.1	16:05	16:50			160559	8278 ft
2093	622210008	092.3	16:20	16:30			162002	8294 ft
2092	622210009	273.1	16:33	16:44			163347	8317 ft
2091	622210010	092.4	16:47	16:58			164757	8330 ft
2090	622210011	273.2	17:01	17:11			170127	8353 ft
2089	622210012	092.4	17:15	17:25		Refly east 12	171513	8307 ft, Riaquire froze up, seems okay?
2089	622210013	273.3	17:29	17:34		east 12.2NM	172940	8307 ft, no swatch, so maybe just buffer

<u></u>	ਣਾ = -
C)
	2
`	_
79	ם م
9	0
Ξ	3

Flight A

LIDAR Flight Log

UnitS2223062IMUApplanix AP60GPS RxTrimble GNSS17Scanner 1 DriveA1Scanner 2 DriveA2	System	Reigl VQ1560ii	
Rx Iner 1 [Unit	S2223062	
GPS Rx Trimble GNSS17 Scanner 1 Drive A1 Scanner 2 Drive A2	NWI	Applanix AP60	
	GPS Rx	Trimble GNSS17	
	Scanner		
	Scanner		

Additional Notes

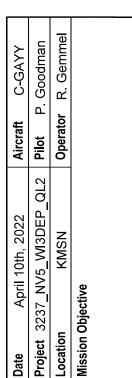
GPS trajectory Files: ALS.010-061
-Riaquire froze on 2089, curious if it's just swatch image that was effected?
-Will confirm maintenance scheduling.

A I R B O R N G I M G A Clean Harbors Company

Time to next maintenance: 2?? © 50 hr O 100 hr

	Aircraft Block Time	
Engine On 13:54	Takeoff 14:14	
Engine Off 20:23 Landing 20:14	Landing 20:14	
Total 6.5 hrs	Total 6.0 hrs	

	2	issio	Mission Plan	
AGL Height	2300	Е	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100	%	% FOV 6	e0° degs


Static	В	GPS Time
Alignment	Start	End
Pre Mission	14:04	14:09
Post Mission	20:17	20:22

	I iDAR	Flight	GPS Tim	Time	Line	Line Aborted	Mission ID	
Flight Line	File Name	Direction	Start	End	Time	nmi to End	Time Stamp 220410	Comments
2088	622210014	273.1	17:43	17:53			220410_174321	8255 ft, cloud dropping
2087	622210015	092.3	17:57	18:08			175755	8215 ft
2086	622210016	273.3	18:11	18:22			181141	8196 ft
2085	622210017	092.4	18:25	18:36			182535	8189 ft
2084	622210018	273.2	18:39	18:49			183903	8173 ft
2083	622210019	092.4	18:53	19:03			185303	8156 ft
2082	622210020	273.2	19:06	19:17			190639	8137 ft
2081	622210021	092.4	19:20	19:30			192020	8133 ft
2080	622210022	273.2	19:34	19:45			193423	8130 ft
2079	622210023	092.4	19:48	19:58			194838	8120 ft Tail wind
Figure 8		8	19:59	20:03				8150 ft +/-
_								

Flight
0
00
$\overline{}$
Day
ulian

<

LIDAR Flight Log

System	Reigl VQ1560ii	
Unit	S2223062	
NMI	Applanix AP60	
GPS Rx	Trimble GNSS17	
Scanner 1 Drive	1 Drive A1	
Scanner 2 Drive	2 Drive A2	

Additional Notes

GPS trajectory Files: ALS.010-061
-Riaquire froze on 2089, curious if it's just swatch image that was effected?
-Will confirm maintenance scheduling.

A Clean Harbors Company AIRBORN

O 100 hr
⊙ 50 hr (
555
ime to next maintenance:

,	Aircraft Block Time	
Engine On 13:54	Takeoff 14:14	
Engine Off 20:23	Landing 20:14	•
Total 6.5 hrs	Total 6.0 hrs	

	2	15510	MISSIOII PIAII	
AGL Height	2300	Ε	Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100	%	FOV 6	sbap 。09

	Comments								
Mission ID	Time Stamp 220410								
Line Aborted	nmi to End								
Line	Time								
GPS Time	End								
	Start								
Flight Direction									
LiDAR File Name									
	Flight Line								

Flight
00
7
Day
ulian

Flight A

LIDAR Flight Log

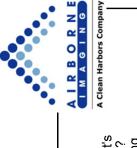
Sys	System	Reigl VQ1560ii	1560ii
Unit	t	S2223062	162
IMU		Applanix AP60	AP60
GP.	GPS Rx	Trimble	Trimble GNSS17
Sca	nner	Scanner 1 Drive	A1
Sca	inner (Scanner 2 Drive	A2

C-GAYY
P. Goodman

Operator

KMSN

Location


Mission Objective

Project 3237_NV5_WI3DEP_QL2

Aircraft Pilot

April 10th, 2022

Date

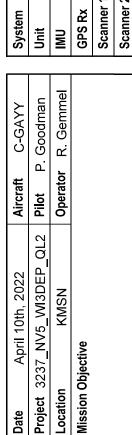
Additional Notes

GPS trajectory Files: ALS.010-061 -Riaquire froze on 2089, curious if it's just swatch image that was effected? -Will confirm maintenance scheduling. Time to next maintenance: 2?? ⊙ 50 hr O 100 hr

	Aircraft Block Time
Engine On 13:54	Takeoff 14:14
Engine Off 20:23	Landing 20:14
Total 6.5 hrs	Total 6.0 hrs

	Σ	issio	Mission Plan	
AGL Height	2300	ш	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100	%) LON	e0 ° degs

	Static	GP	GPS Time
	Alignment	Start	End
_	Pre Mission	14:04	14:09
	Post Mission	20:17	20:22


	Comments								
Mission ID	Time Stamp 220410								
Line Aborted	nmi to End								
Line	Time								
GPS Time	End								
Sd9	Start								
Flight Direction									
LiDAR File Name									
	Flight Line								

Flight
00
$\overline{}$
Day
ılian

Date

<

LIDAR Flight Log

System	Reigl VQ1560ii
Unit	S2223062
NMI	Applanix AP60
SPS Rx	Trimble GNSS17
Scanner 1 Drive	1 Drive A1
Scanner 2 Drive	2 Drive A2

S
ş
ž
g
5
芸
ğ
Q.

GPS trajectory Files: ALS.010-061
-Riaquire froze on 2089, curious if it's just swatch image that was effected?
-Will confirm maintenance scheduling.

A Clean Harbors Company AIRBORNIMAGING

100 hr
0
ᆂ
⊙ 50 hr
•
555
Time to next maintenance:

	Aircraft Block Time
Engine On 13:54	Takeoff 14:14
Engine Off 20:23 Landing 20:14	Landing 20:14
Total 6.5 hrs	Total 6.0 hrs

	Σ	Mission	n Plan	
AGL Height	2300	Ε	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 1	kts Scan Rate 100 (102 plane)
Laser Current	100	%	% FOV	sbep ° 09

Static	GP	GPS Time
Alignment	Start	End
Pre Mission	14:04	14:09
Post Mission	20:17	20:22

	Comments								
Mission ID	Time Stamp 220410								
Line Aborted	nmi to End								
Line	Time								
GPS Time	End								
Sd9	Start								
Fliaht	Direction								
LiDAR	File Name								
	Flight Line								

⋖
Flight
101
Day
Julian

Date April 1	April 11th, 2022	Aircraft	C-GAYY
Project 3237_NV5_WI3DEP_QL2 Pilot	WI3DEP_QL2		P. Goodman
Location	KMSN	Operator	Operator R. Gemmel
Mission Objective			

Svefem	Raid VO1560ii
	1000 × 1600 1
Unit	S2223062
NWI	Applanix AP60
GPS Rx	Trimble GNSS17
Scanner 1 Drive	1 Drive B1
Scanner 2 Drive	2 Drive B2

Time to next maint	01	B2	er 2 Drive
		B1	er 1 Drive
	SS17	Trimble GNSS17	t Trim
	0	Applanix AP60	Apple
GPS trajectory		S2223062	S2
Additional Notes	30ii	Reigl VQ1560ii	n Rei

GPS Time		#] au	B2 Nission Plan
hr	32.7 O 50 hr © 100 hr	•	Time to next maintenance:		B2
					B1
				17	le GNSS17
	5				ıix AP60
A Clean Harbors Company		GPS trajectory Files: ALS.066-116	GPS trajectory		23062
AIRBORNE	A		Additional Notes	:=	VQ1560ii

2300

AGL Height

Mission Plan

Aircraft Block Time

Takeoff 14:46 Landing 20:42 Total 5.9 hrs

Engine On 14:28 Engine Off 20:51

hrs

6.4

Tota

。09

100 160

Target Speed Laser Current

	LiDAR	Flight	GPS	GPS Time	Line	Line Aborted	Mission ID	
Flight Line	File Name	Direction	Start	End	Time	nmi to End	Time Stamp 220411	Comments
							220411_143700	
Figure 8		8	14:54	14:59				8150 ft +/-
2078	622210101	273.6	15:04	15:17			220411_150401	8104 ft, heavy head wind
2077	622210102	092.4	15:21	15:31			152102	8094 ft , heavy tail wind
2076	622210103	273.2	15:34	15:47			153448	8100 ft, heavy head wind
2100	622210104	182.3	15:51	16:03			155146	8107 ft, heavy X wind, X-Tie
								Using to scout cloud, fly whole thing
2075	622210105	182.0	16:15	16:25			161518	8199 ft, might be cloud, scouting X-Tie
2074	622210106	033.0	16:34	16:42			163404	8199 ft, Wind the same, head/tail
2073	622210107	273.4	16:45	16:56			164536	8199 ft
2072	622210108	092.7	16:59	17:07			165935	8199 ft
2071	622210109	273.4	17:11	17:21			171107	8199 ft

8199 ft 8199 ft 8199 ft

172503 173659 175038

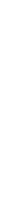
17:33

17:25 17:36 17:50

092.7 273.4 092.7

622210110

2070 2069 2068


622210112 622210111

17:59 17:47

Flight
101
Day
Julian

<u>خ</u>

LIDAR Flight Log

System	Reigl V	Reigl VQ1560ii
Unit	S2223062	062
NI	Applanix AP60	AP60
GPS Rx	Trimble	Trimble GNSS17
Scanner 1 Drive	1 Drive	B1
Scanner 2 Drive	2 Drive	B2

Operator R. Gemmel

P. Goodman C-GAYY

Project 3237_NV5_WI3DEP_QL2

KMSN

Location

Mission Objective

April 11th, 2022

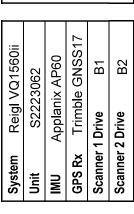
Date

Aircraft Pilot

Notes	ectory Files: ALS.066-116
Additional Not	GPS trajectory

A Clean Harbors Company AIRBORN IMAGING

⊙ 50 hr **O** 100 hr 32.7 Time to next maintenance:


Aircraft Block Time	Takeoff 14:46	Landing 20:42	Total 5.9 hrs
	Engine On 14:28 Takeoff 14:46	Engine Off 20:51	Total 6.4 hrs

	2	Mission	n Plan	
AGL Height	2300	ш	Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100	%	FOV 6	seep ° 09

Static	₽Đ	GPS Time
Alignment	Start	End
Pre Mission	14:37	14:42
Post Mission	20:45	20:50

	Comments	8199 ft, fuel gauge not reading proper	8199 ft	8301 ft	8301 ft	8350 ft +/-									
Mission ID	Time Stamp 220411	220411_180228	181618	182817	184239	185446	190855	192104	193503	194707	200100	201311			
Line Aborted	nmi to End														
Line	Time														
Time	End	18:13	18:24	18:39	18:51	19:05	19:17	19:31	19:43	19:57	20:09	20:23	20:29		
GPS Time	Start	18:02	18:16	18:28	18:42	18:54	19:08	19:21	19:35	19:47	20:01	20:13	20:25		
Fliaht	Direction	273.5	092.8	273.4	092.8	273.4	092.7	273.4	092.8	273.5	092.8	273.5	8		
Lidar	File Name	622210113	622210114	622210115	622210116	622210117	622210118	622210119	622210120	622210121	622210122	622210123			
	Flight Line	2067	2066	2065	2064	2063	2062	2061	2060	2059	2058	2057	Figure 8		

Flight A	
101	
Julian Day	

Operator R. Gemmel

P. Goodman C-GAYY

Project 3237_NV5_WI3DEP_QL2 April 11th, 2022

Date

KMSN

Location

Mission Objective

Aircraft Pilot

nal Notes	trajectory Files: ALS.066-116
Additiona	GPS tra

⊙ 50 hr **O** 100 hr 32.7 Time to next maintenance:

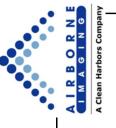
ne			
Aircraft Block Time	14:46	Landing 20:42	Total 5.9 hrs
aft B	JJoe	ding	al 5.
Aircr	Tak	Lan	Tota
,	Engine On 14:28 Takeoff 14:46	Engine Off 20:51	Total 6.4 hrs
	on 0	₩0	6.4
	Engine	Engine	Total

	Σ	issio	Mission Plan	
AGL Height	2300	ш	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100	%	^0 -	60 ° degs

Static	49	GPS Time
Alignment	Start	End
Pre Mission	14:37	14:42
Post Mission	20:45	20:50

Comments															
Time Stamp 220411															
nmi to End															
Time															
End															
Start															
Direction															
File Name															
Flight Line															
	End Time nmi to End Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411	File Name Direction Start End Time Stamp 220411	File Name Direction Start End Time Stamp 220411	File Name Direction Start End Time Time Stamp_220411 File Name Direction Start End Time Stamp_220411	File Name Direction Start End Time Stamp_220411	File Name Direction Start End Time Stamp_220411 Image: Control of the properties of	File Name Direction Start End Time Time Stamp 220411 Time Stamp 220411 Time Stamp 220411	File Name Direction Start End Time nmi to End Time Stamp 220411 Time Stamp 1

Page 3 of 2


Flight eta	
101	
Julian Day	

Reigl VQ1560ii

System Unit $\frac{1}{8}$

Aircraft Pilot

GPS trajectory Files: Al S 066-118

AC			
JPS (Iajectory Files, ALS, 000-116			
٠,			

Trimble GNSS17

GPS Rx

Scanner 1 Drive **Scanner 2 Drive**

Applanix AP60

Operator R. Gemmel

P. Goodman C-GAYY

Project 3237_NV5_WI3DEP_QL2 April 11th, 2022

Date

KMSN

Location

Mission Objective

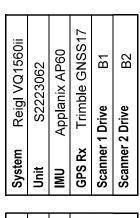
S2223062

© 50 hr O 100 hr	
32.7	
Time to next maintenance:	

B2 B1

< Time	.46	:42	hrs
Aircraft Block Time	Engine On 14:28 Takeoff 14:46	Landing 20:42	Total 5.9 hrs
	14:28	20:51	hrs
	0 O) Off	6.4
	Engine	Engine Off 20:51	Total 6.4 hrs

	2	issio	Mission Plan	
AGL Height	2300	Ε	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 100 (102 plane)	(102 plane)
Laser Current	100	%	% FOV 60°	sbep 。


Static	GF	GPS Time
Alignment	Start	End
Pre Mission	14:37	14:42
 Post Mission	20:45	20:50

	Comments								
Mission ID	Time Stamp 220411								
Line Aborted	nmi to End								
Line	Time								
Time	End								
GPS Time	Start								
Fliaht	Direction								
LiDAR	File Name								
	Flight Line								

Page 4 of 2

ì	Flight /
7	101
1	Day
:	ulian

Operator R. Gemmel

P. Goodman C-GAYY

Project 3237_NV5_WI3DEP_QL2 April 11th, 2022

Date

KMSN

Location

Mission Objective

Aircraft Pilot

A I R B O R N E I M A G I N G

A Clean Harbors Company

⊙ 50 hr **O** 100 hr 32.7 Time to next maintenance:

Aircraft Block Time	Takeoff 14:46	Landing 20:42	Total 5.9 hrs
	Engine On 14:28	Engine Off 20:51	Total 6.4 hrs

	Ζ	lissio	Mission Plan	
AGL Height	2300	ш	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100	%	9 FOV 6	60 ° degs

Static	В	GPS Time
Alignment	Start	End
Pre Mission	14:37	14:42
Post Mission	20:45	20:50

	Comments								
Mission ID	Time Stamp 220411								
Line Aborted	nmi to End								
Line	Time								
Time	End								
GPS Time	Start								
Fliaht	Direction								
LiDAR	File Name								
	Flight Line								

Fig
02
-
Day
ulian

ght A

LIDAR Flight Log

Trimble GNSS17 Reigl VQ1560ii Applanix AP60 Ā **A**2 Scanner 1 Drive **Scanner 2 Drive GPS Rx** System Unit $\frac{1}{8}$ R. Gemmel P. Goodman C-GAYY

Operator

KMSN

Location

-2054-2056 -2033-2053, wx came in

Mission Objective

Project 3237_NV5_WI3DEP_QL2

Aircraft Pilot

April 12th, 2022

Date

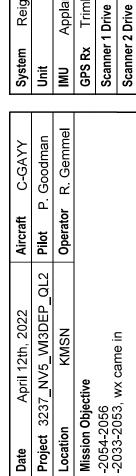
AIRBORNE	A Clean Harbors Company
Additional Notes	GPS trajectory Files: ALS.117-158

26.8 Time to next maintenance:

ø.			
lock Time	13:12	17:57	8 hrs
Aircraft Block Time	Takeoff 13:12	Landing 17:57	Total 4.8 hrs
,	Engine On 12:56	Engine Off 18:06	Total 5.2 hrs
	ou 6) Off	5.2
	Engine	Engine	Total

	Ν	lissio	Mission Plan	
AGL Height	2300	ш	m Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
Laser Current	100 % FOV	%		s69 ° 09

	Static	GF	GPS Time
Z	Alignment	Start	End
ane)	Pre Mission	13:03	13:08
degs	Post Mission	17:59	18:04


9							-	
8100 ft	155249			16:01	15:52		1 004.2	
8100 ft	154052			15:49	15:40		184.3	
8199 ft	152909			15:37	15:29		004.2	
8199 ft	151719			15:26	15:17		184.3	
8199 ft	150537			15:14	15:05		004.3	
8199 ft, half over lake, do X-Tie north	144808			14:57	14:48	1/	093.5	
8250 ft +/-				14:45	41	14:41	8 14:	
8300 ft +/-				14:15	2	14:12	8 14:1	
8301 ft	140240			14:10)2	14:02	092.8 14:0	
8301 ft	135008			13:59	50	13:50	273.5 13:	
8301 ft	133828			13:46	38	13:38	093.1 13:3	
8199 ft, trimmed to 4.4 NM for X-Tie	220412_132845			13:30	8	13:28	183.2 13:2	
8200 ft +/-				13:24	0	13:20	8 13:2	
	220412_130323							
Comments	Time Stamp 220410	nmi to End	Time	End		Start	Direction Start	e Direction
	Mission ID	Line Aborted	Lin	Time	GPS Tim		Flight	LiDAR Flight

i	Flig
	Z C
•	_
1	Day
	lan
	₹

Date

Jht A

LIDAR Flight Log

Reigl VQ1560ii	Additional
	GPS traje
Applanix AP60	
Trimble GNSS17	
Drive A1	

	: ALS.117-158	
	Files: /	
onal Notes	trajectory l	
≔	'n	

⊙ 50 hr **O** 100 hr 26.8 Time to next maintenance:

A2

Aircraft Block Time	Takeoff 13:12	Landing 17:57	Total 4.8 hrs
	Engine On 12:56	Engine Off 18:06	
	00 t) Off	5.2
	Engine	Engine	Total 5.2 hrs

	N	ISSIO	Mission Plan	
AGL Height	2300	Ε	Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 100 (102 plane)) (102 plane
Laser Current	100	%	% FOV 6(sbap ° 09

Static	. 9	GPS Time
Alignment	Start	End
Pre Mission	13:03	13:08
Post Mission	17:59	18:04

	LiDAR	Fliaht	GPS	GPS Time	Line	Line Aborted	Mission ID	
Flight Line	File Name	Direction	Start	End	Time	nmi to End	Time Stamp 220410	Comments
2047	622210211	184.3	16:04	16:13			220410_160407	8199 ft
2046	622210212	1.400	16:16	16:24			161601	8100 ft
2045	622210213	184.2	16:27	16:36			162727	8100 ft, low cloud virga/rain coming in.
2044	622210214	1.400	16:39	16:47			163917	8199 ft
2043	622210215	184.2	16:50	16:59			165035	8199 ft Rain almost on us, 1 more line.
								REFLY south 5 NM - rain, make it 7NM
2042	622210216	1.400	17:02	17:10			170234	8199 ft
								REFLY south 5 NM - rain, make it 7NM
X-Tie_42-52	622210217	-/+ 0'960	17:13	17:18			171325	8200 ft +/-
								Extra X-Tie, more over land/less lake
Figure 8		8	17:19	17:23				8250 ft +/-

Page 2 of 2

Flight
102
Julian Day

⋖

LIDAR Flight Log

Date April 12th, 2022		Aircraft	C-GAYY
Project 3237_NV5_WI3DEP_QL2 Pilot P. Goodman	P_QL2 F	Pilot P.	Goodman
Location KMSN)	Operator	Operator R. Gemmel
Mission Objective			
-2054-2056 -2033-2053, wx came in			

System	Reigl VQ1560ii
Unit	
NWI	Applanix AP60
GPS Rx	Trimble GNSS17
Scanner 1 Drive	1 Drive A1
Scanner 2 Drive	2 Drive A2

Time to next maintenance: 26.8 © 50 hr O 100 hr

			Aircraft Block Time	
Engine On 12:56	n(12:56	Takeoff 13:12	
Engine Off 18:06	JĘĘ	18:06	Landing 17:57	
Total 5.2 hrs	5.2		Total 4.8 hrs	

	Σ	Mission	n Plan	
AGL Height	2300	Ε	Pulse Rate	500 kHz
Target Speed	160	kts	Scan Rate 1 (Scan Rate 100 (102 plane)
Laser Current	100	%	% FOV 6	60 ° degs

Static	19	GPS Time
Alignment	Start	End
Pre Mission	13:03	13:08
Post Mission	17:59	18:04

				 	 ,	,			
	Comments								
Mission ID	Time Stamp 220410								
Line Aborted	nmi to End								
Line	Time								
GPS Time	End								
GPS	Start								
Flight	Direction								
LiDAR	File Name								
	Flight Line								

Page 3 of 2

⋖
Flight
102
Day '
ulian


LIDAR Flight Log

System Unit $\frac{1}{8}$

Aircraft Pilot

April 12th, 2022

Date

Reigl VQ1560ii Applanix AP60

A			
JPS trajectory Files: ALS:117-158			
רי			

Trimble GNSS17

GPS Rx

R. Gemmel P. Goodman C-GAYY

Operator

KMSN

Location

-2054-2056 -2033-2053, wx came in

Mission Objective

Project 3237_NV5_WI3DEP_QL2

Ā **A**2

Scanner 1 Drive Scanner 2 Drive

A CI			
GPS trajectory Files: ALS.117-138			
ر			

● 50 hr O 100 hr
26.8
Time to next maintenance:

			Aircraft	: Blc	Aircraft Block Time	Ð
Engine On 12:56	Ou	12:56	Takeoff 13:12	` =	13:12	
Engine Off 18:06	Off	18:06	Landing 17:57) gı	7:57	
Total 5.2 hrs	5.2		Total 4.8 hrs	4.8	hrs	

2300 m 160 kts		•			
160 kts	AGL Height	2300	Ε	Pulse Rate	500 kHz
100 % FOV	Target Speed	160	kts	Scan Rate 10	Scan Rate 100 (102 plane)
· · · · ·	Laser Current	100	%	F0V 6	s69 ° 09

	Static	GP	GPS Time
	Alignment	Start	End
(i)	Pre Mission	13:03	13:08
'n	Post Mission	17:59	18:04

	Comments								
Mission ID	Time Stamp 220410								
Line Aborted	nmi to End								
Line	Time								
GPS Time	End								
Sd9	Start								
Fliaht	Direction								
LiDAR	File Name								
	Flight Line								

Page 4 of 2

Flight
102
ılian Day ´

<

LIDAR Flight Log

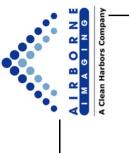
Trimble GNSS17 Reigl VQ1560ii Applanix AP60 Ā **A**2 Scanner 1 Drive Scanner 2 Drive **GPS Rx** System Unit $\frac{1}{8}$ R. Gemmel P. Goodman C-GAYY

Operator

KMSN

Location

-2054-2056 -2033-2053, wx came in


Mission Objective

Project 3237_NV5_WI3DEP_QL2

Aircraft Pilot

April 12th, 2022

Date

GPS trajectory Files: ALS.117-158

Additional Notes

100 hr
\circ
ᆂ
⊙ 50 hr (
⊚
26.8
Time to next maintenance:

Aircraft Block Time Engine On 12:56 Takeoff 13:12 Engine Off 18:06 Landing 17:57 Total 5.2 hrs Total 4.8 hrs	Engine On 12:56 Engine Off 18:06 Total 5.2 hrs
--	--

AGL Height 2300 m Pulse Rate 500 kHz Target Speed 160 kts Scan Rate 100 (102 plane) Laser Current 100 % FOV 60° degs		2	Mission	n Plan	
160 kts Scan Rate 100 (102 pl 100 % FOV 60 °	AGL Height	2300	ш	Pulse Rate	500 kHz
100 % FOV 60 °	Target Speed	160	kts	Scan Rate 10	0 (102 plane)
	Laser Current	100	%	۰۵۸	s6ep ° 0

	Static	GP	GPS Time
	Alignment	Start	End
ine)	Pre Mission	13:03	13:08
legs	Post Mission	17:59	18:04

	Comments								
Mission ID	Time Stamp 220410								
Line Aborted	nmi to End								
Line	Time								
GPS Time	End								
GPS	Start								
Flight	Direction								
LiDAR	File Name								
	Flight Line								

Page 5 of 2

Appendix B

SBET and POSPAC Reports

General Information

Mission Information

Project name	04112022A_3062
Processing date	2022-04-13 16:05:30
Mission date	2022-04-11 14:37:19
Mission duration	06:13:05.285
Processing mode	IN-Fusion PP-RTX

Rover Hardware Information

Product	POS AV 610 VER6 HW2.5-12
Serial number	S/N8708
IMU type	57
Receiver type	BD982
Antenna type	Bilinmeyen harici

Project File List

Rover Data Files

File name	File type
220411_143700_INS-GPS_1.raw	POS Data

Input Files

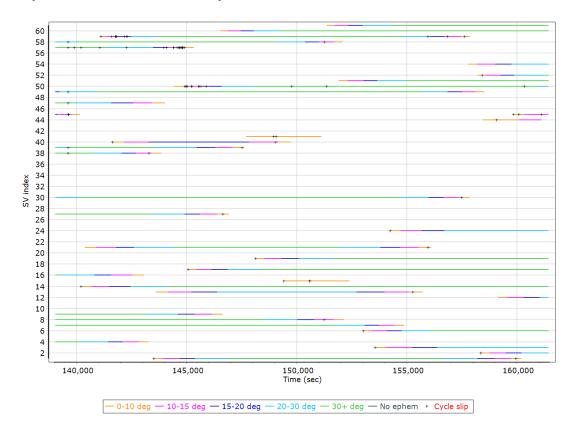
File Name	File Type
Ephm1010.22g	GLONASS Broadcast Ephemeris
Ephm1010.22n	GPS Broadcast Ephemeris

Output Files

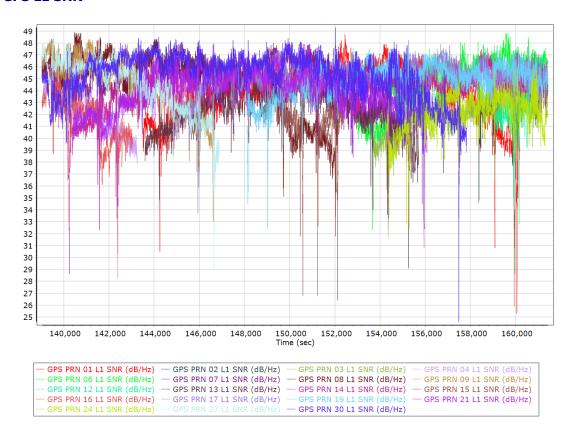
Filename	File type
sbet_04112022A_3062.out	SBET Trajectory File

Rover Data Summary

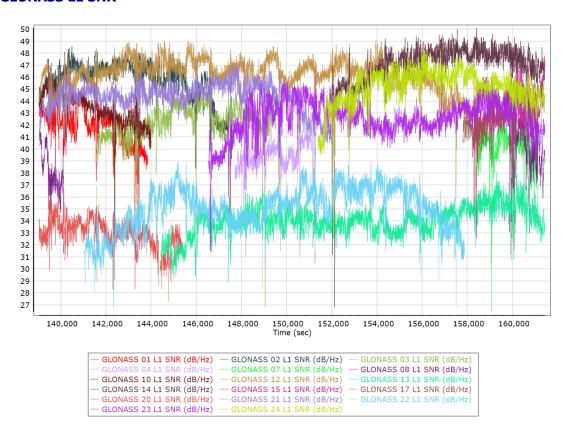
First raw data file	220411_143700_	_INS-GPS_1.raw			
Last raw data file	220411_143700_INS-GPS_1.raw				
Start GPS week	2205				
Start time	139020.521 (4/	11/2022 2:37:0	0 PM)		
End time	161405.806 (4/	11/2022 8:50:0	5 PM)		
Start of fine alignment	139075.543 (4/	11/2022 2:37:5	5 PM)		
Available subsystems	Primary GNSS,	Gimbal, IMU			
POS Event Input	None				
Correction data	None				
IMU Installation Lever Arms & Mounting Angles					
Gimbal to IMU lever arm (m)	0.000	0.000	0.000		
Gimbal to IMU mounting angles (deg)	0.000	0.000	0.000		
Gimbal to Primary GNSS lever arm (m)	0.142	-0.236	-1.269		
Gimbal to Primary GNSS lever arm std dev (m)	-1.000				
Aircraft to Reference mounting angles (deg)	0.000	0.000	0.000		


Rover Data QC

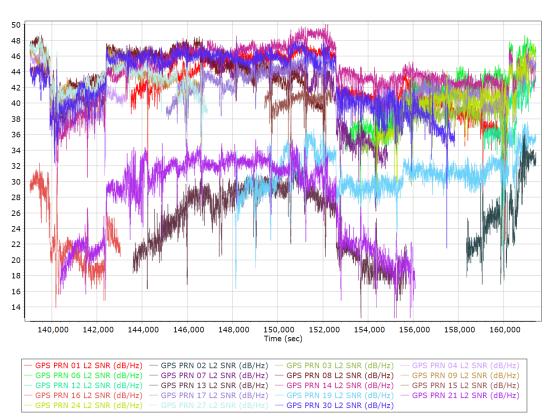
Raw IMU Import QC Summary

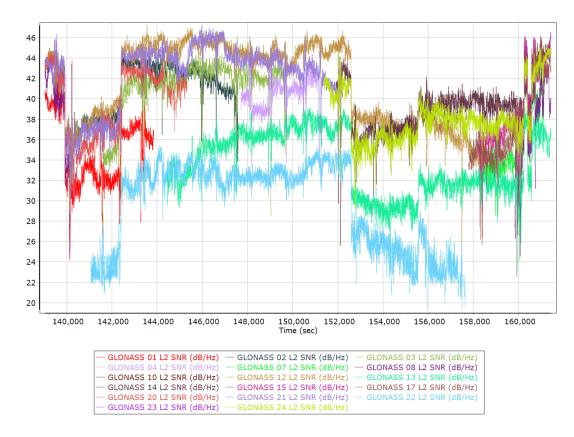

IMU data input file	imu_Mission 1.dat
IMU data check log file	imudt_04112022A_3062.log
IMU Records Processed	4477142
Termination Status	Normal
IMU Anomalies	0

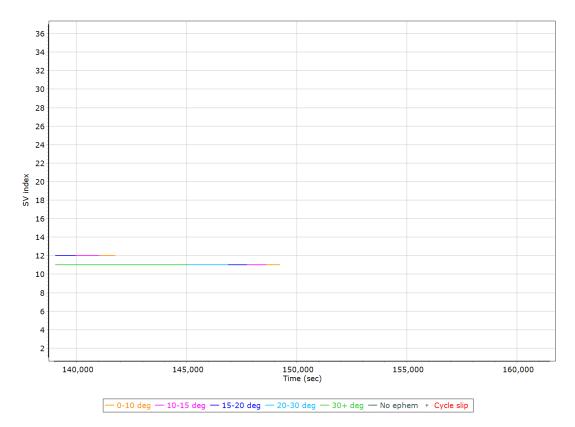
Primary Observables & Satellite Data

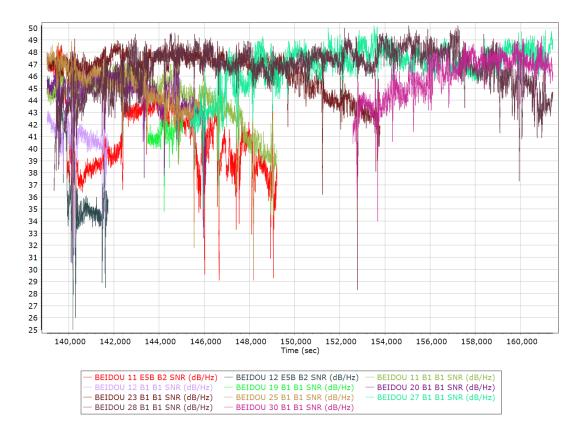

GPS/GLONASS L1 Satellite Lock/Elevation

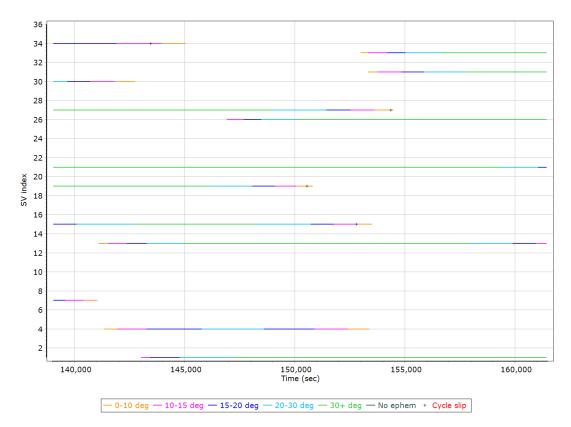
GPS L1 SNR

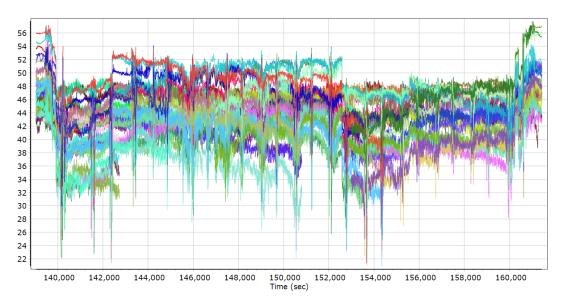

GLONASS L1 SNR

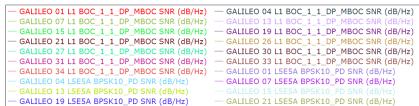

GPS/GLONASS L2 Satellite Lock/Elevation


GPS L2 SNR

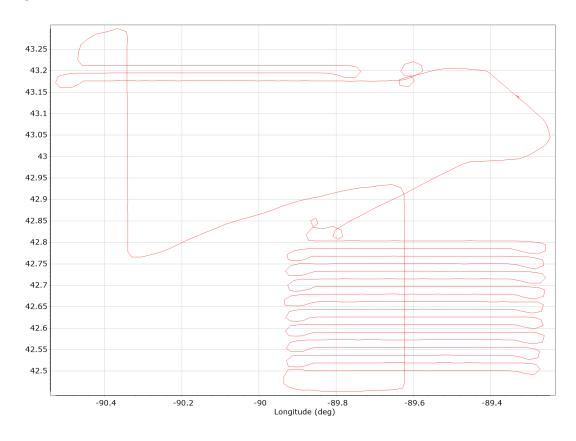

GLONASS L2 SNR

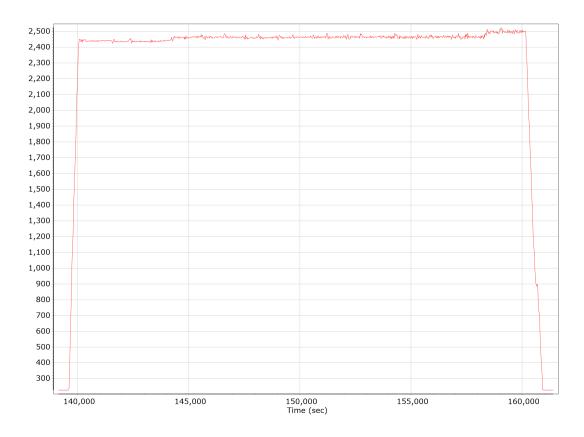

BEIDOU Satellite Lock/Elevation


BEIDOU SNR

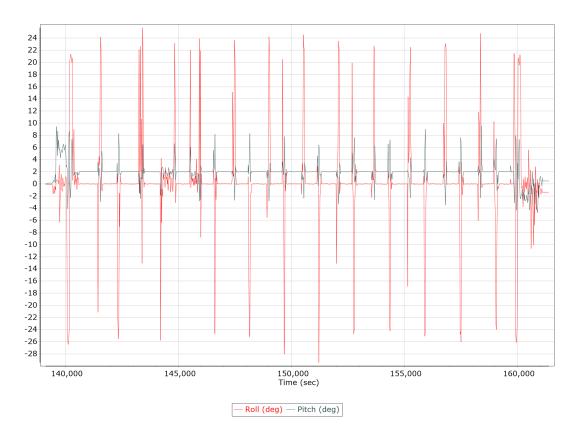


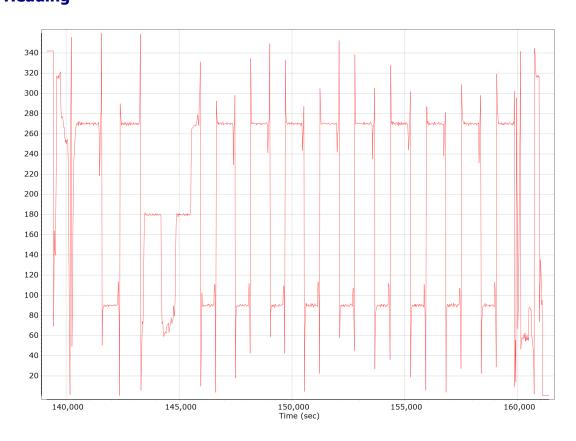
GALILEO Satellite Lock/Elevation

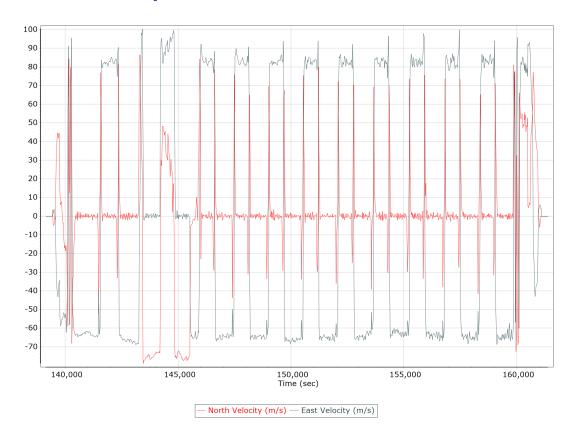

GALILEO SNR

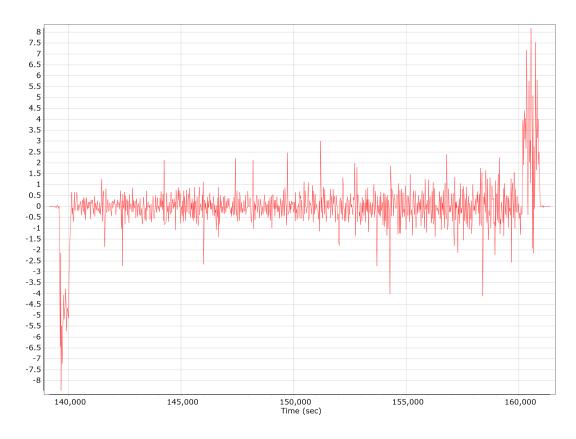


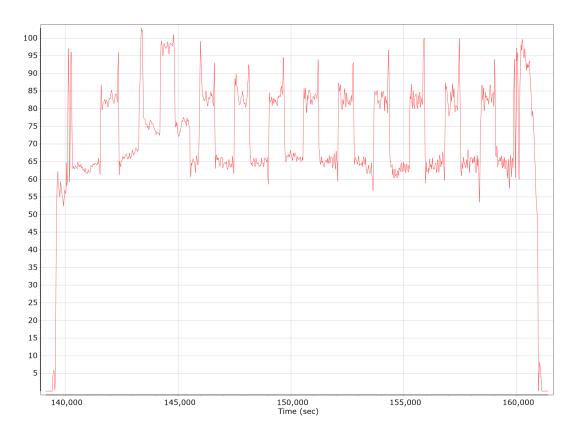
Smoothed Trajectory Information

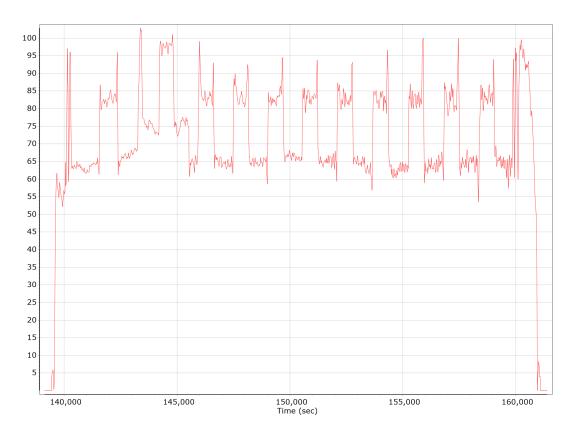

Top View


Altitude

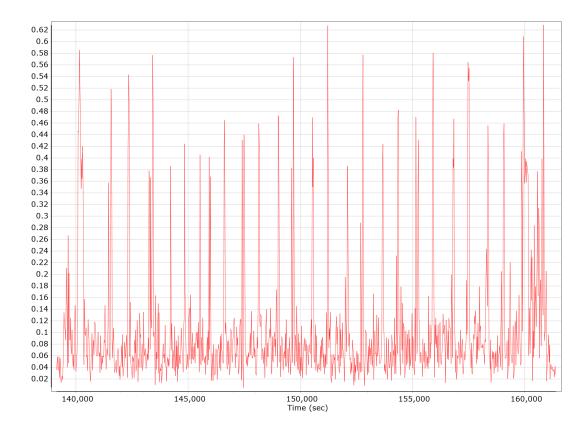

Roll/Pitch

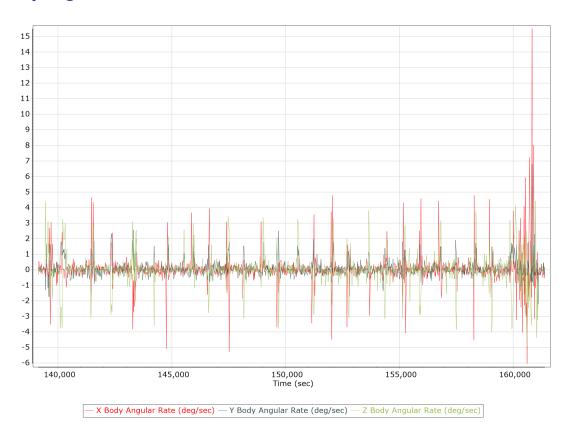

Heading

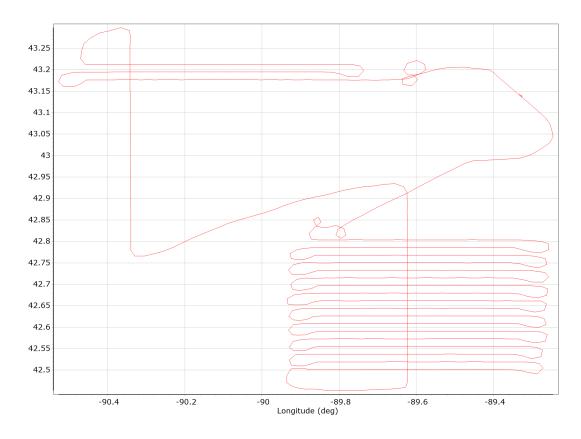

North/East Velocity

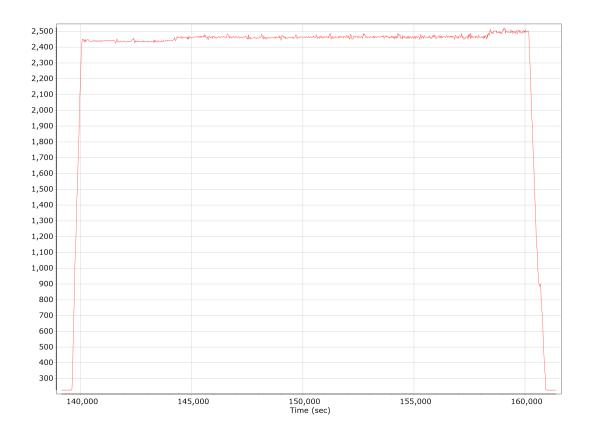

Down Velocity

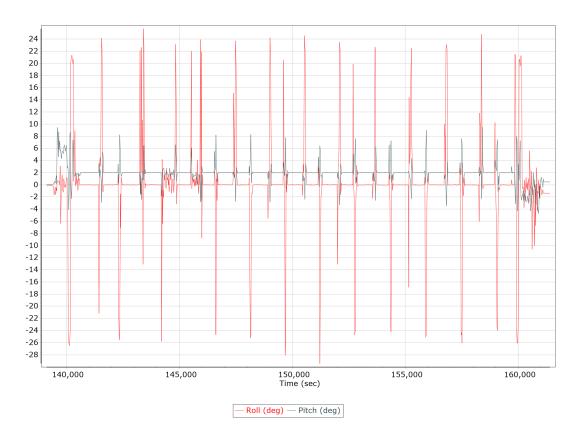
Total Speed

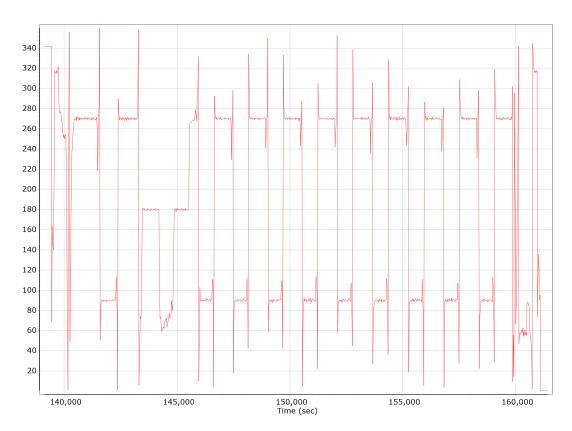

Ground Speed

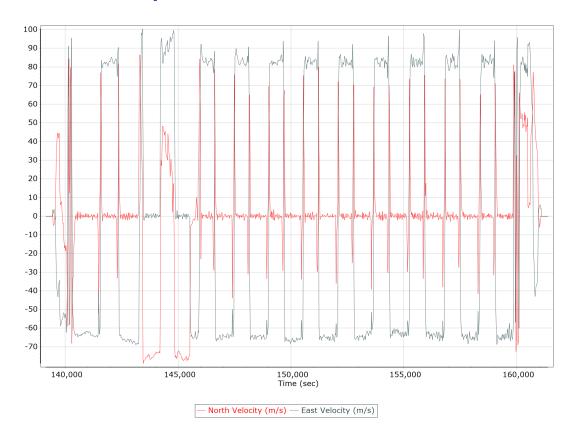

Body Acceleration

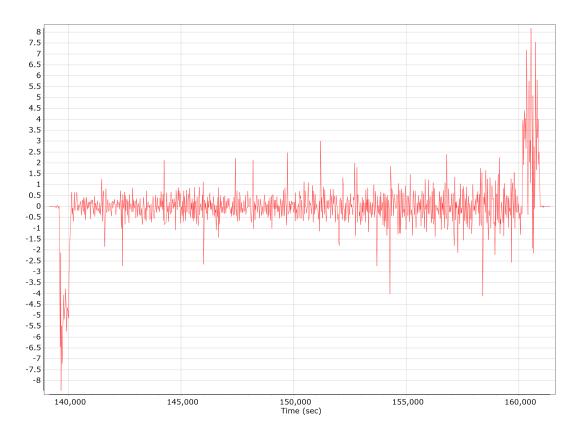

Total Body Acceleration

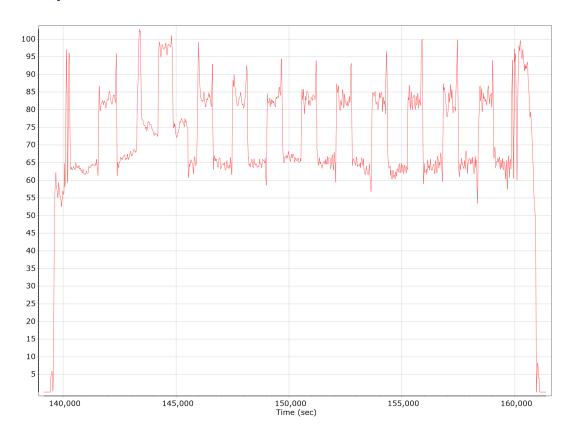

Body Angular Rate

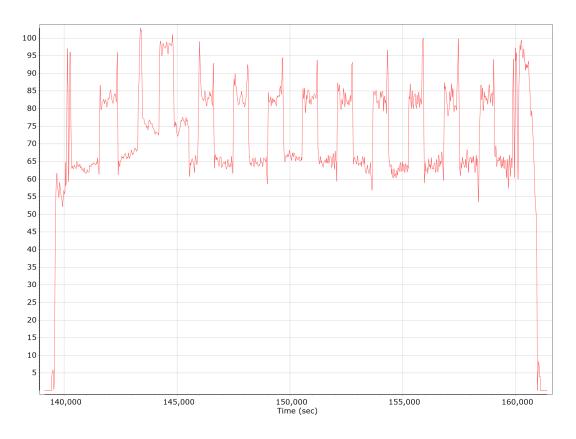

Forward Processed Trajectory Information Top View


Altitude

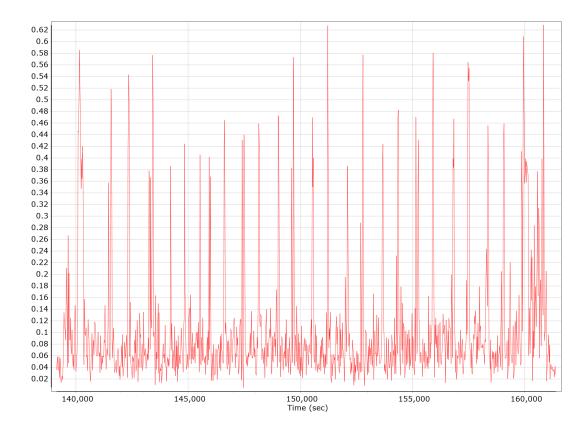

Roll/Pitch

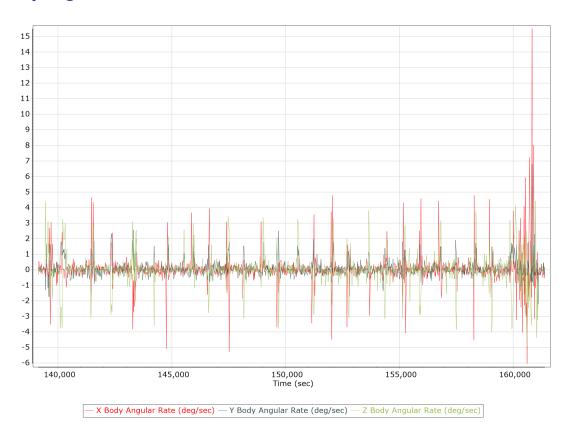

Heading


North/East Velocity


Down Velocity

Total Speed


Ground Speed


Body Acceleration

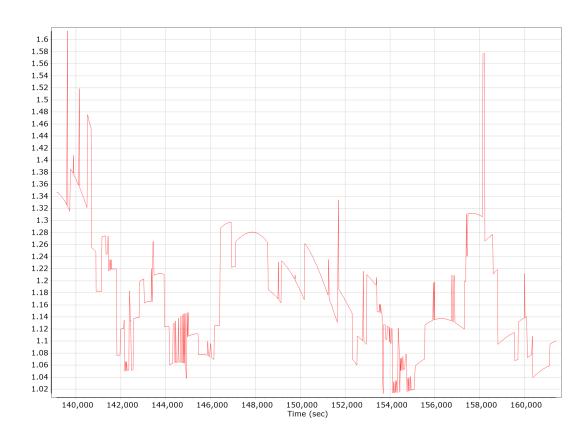
Total Body Acceleration

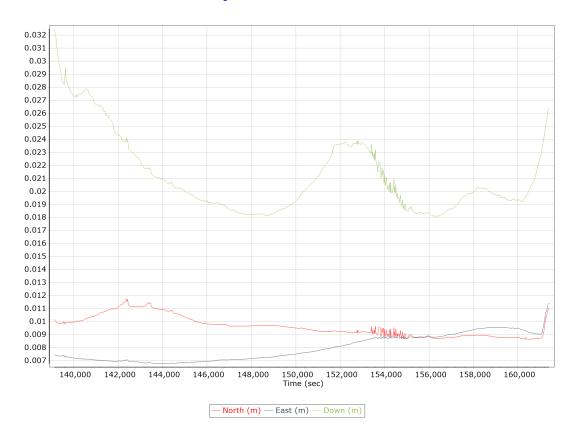
Body Angular Rate

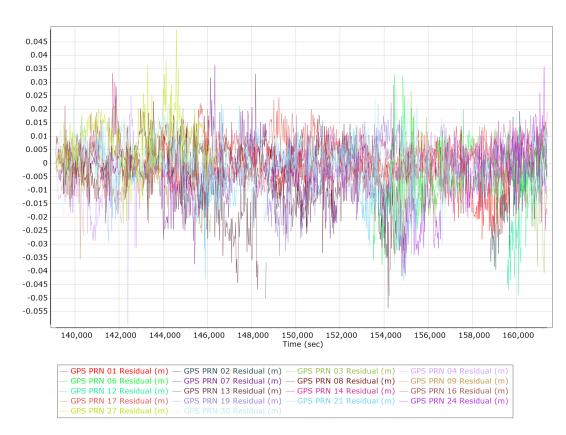
GNSS QC

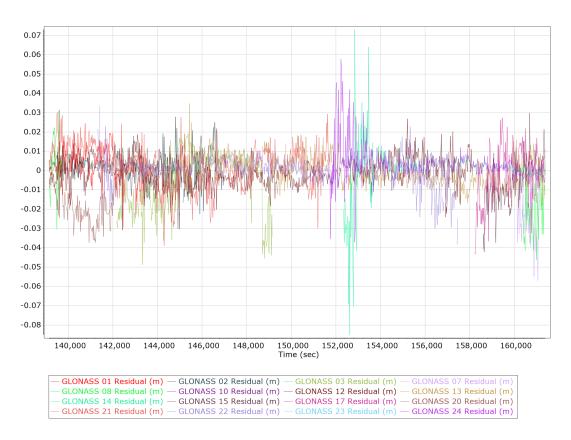

GNSS QC Statistics

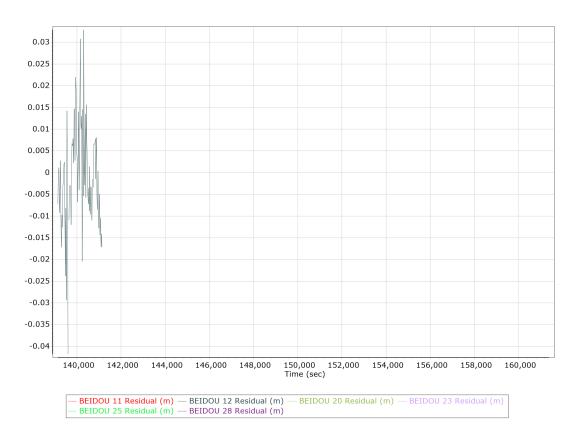
Statistics	Min	Max	Mean
Baseline length (km)	0.00	0.00	
Number of GPS SV	7	10	8
Number of GLONASS SV	0	7	5
Number of QZSS SV	0	0	0
Number of BEIDOU SV	0	2	0
Number of GALILEO SV	4	8	6
Total number of SV	13	23	20
PDOP	1.01	1.61	1.18
QC Solution Gaps	1.00	1.00	
Solution Type	Fixed	Float	No solution
Epoch (sec)	22352.00	0.00	4.00
Percentage	99.98	0.00	0.02

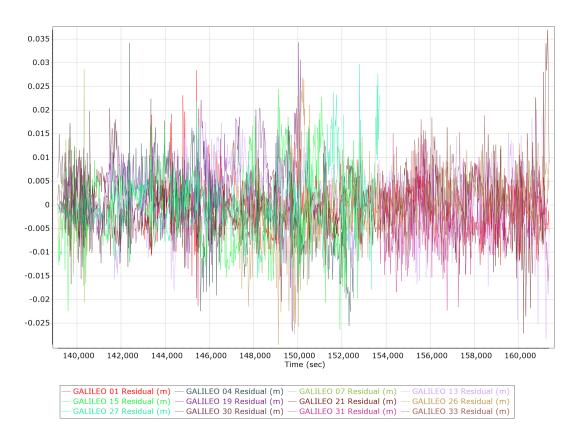

Num SVs in solution


Forward/Reverse Separation


PDOP

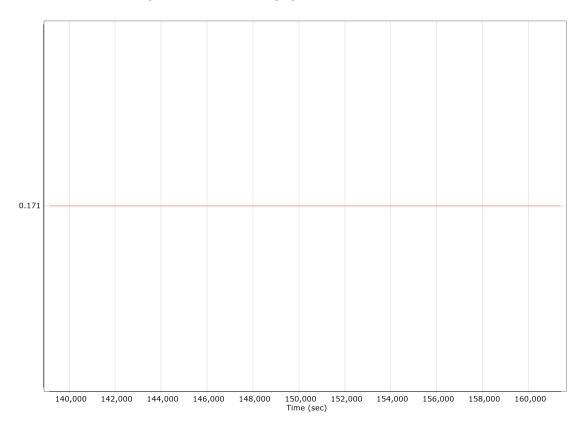

Estimated Position Accuracy


GPS Residuals

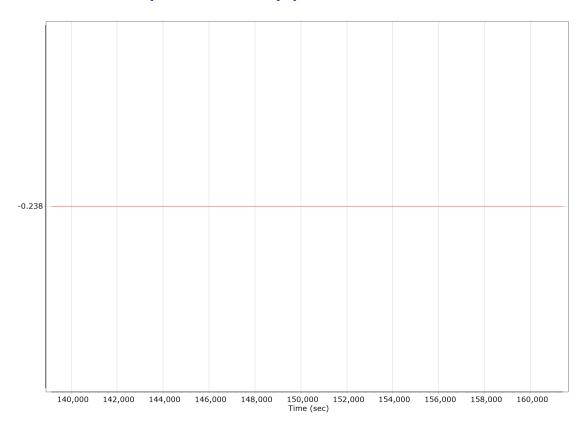

GLONASS Residuals

BEIDOU Residuals

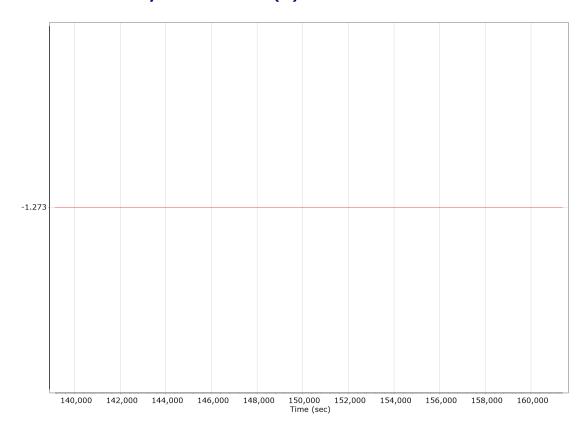
GALILEO Residuals

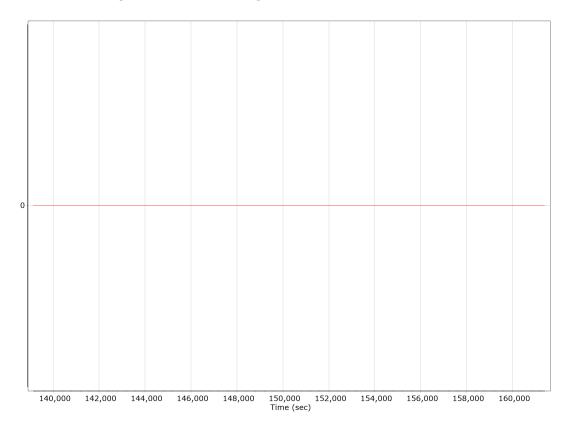

GNSS-Inertial Processor Configuration

Processing mode	IN-Fusion PP-RTX		
Stabilized mount	True		
Processing start time	139021.000 (4/11/2022 2:37:01 PM)		
Processing end time	161411.000 (4/11/2022 8:50:11 PM)		
Initial attitude source	Real-Time VNAV/RNAV Attitude		
IMU Sensor Context	Processing with Onboard IMU		
Gimbal to IMU lever arm (m)	0.000	0.000	0.000
Gimbal to IMU mounting angles (deg)	0.000	0.000	0.000
Gimbal to Primary GNSS lever arm (m)	0.171	-0.238	-1.273
Gimbal to Primary GNSS lever arm std dev (m)	0.030	0.030	0.030
Aircraft to Reference mounting angles (deg)	0.000	0.000	0.000

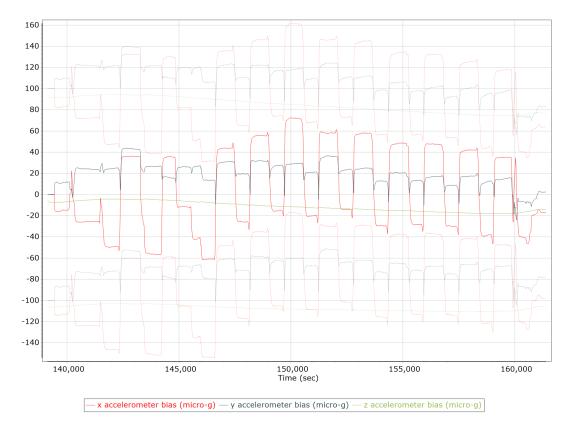

Calibrated Installation Parameters

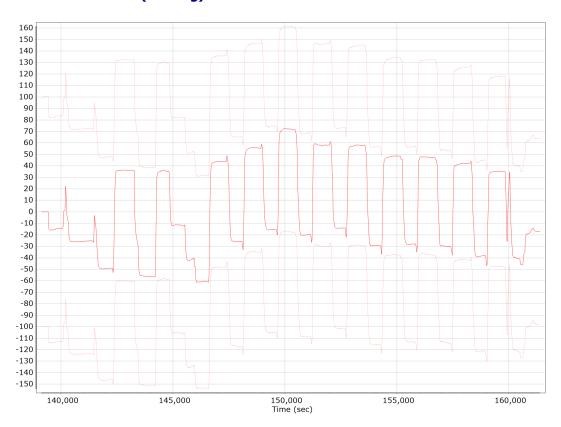
Reference-Primary GNSS Lever Arm (m)


X Reference-Primary GNSS Lever Arm (m)

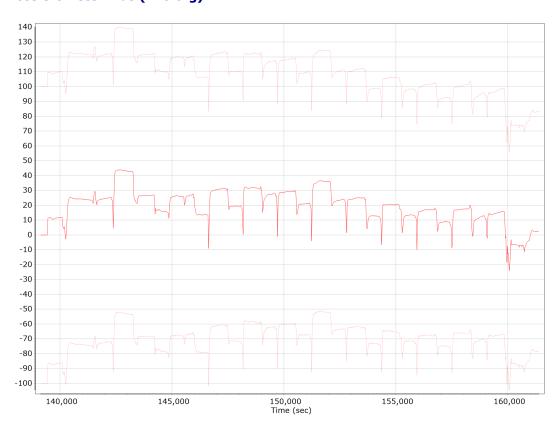

Y Reference-Primary GNSS Lever Arm (m)

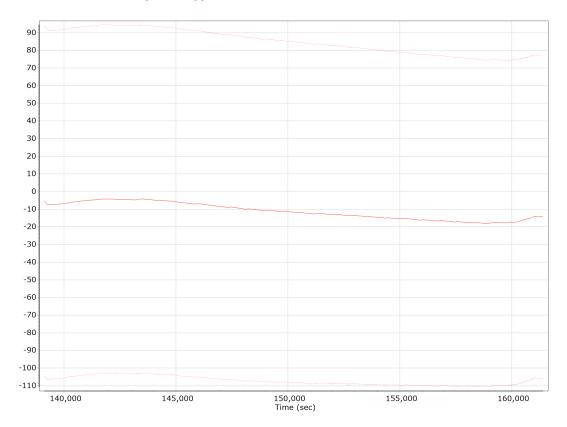
Z Reference-Primary GNSS Lever Arm (m)

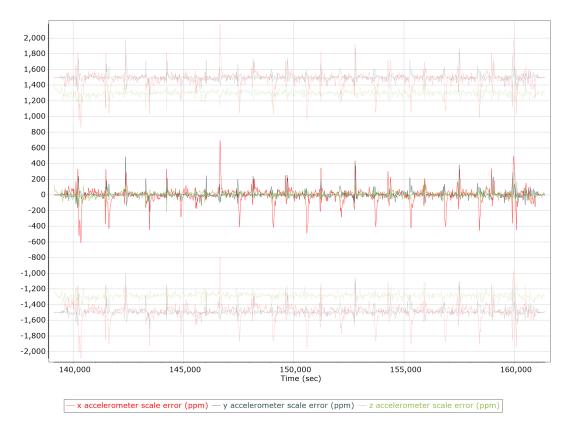

Reference-Primary GNSS Lever Arm Figure of Merit


IN-Fusion QC

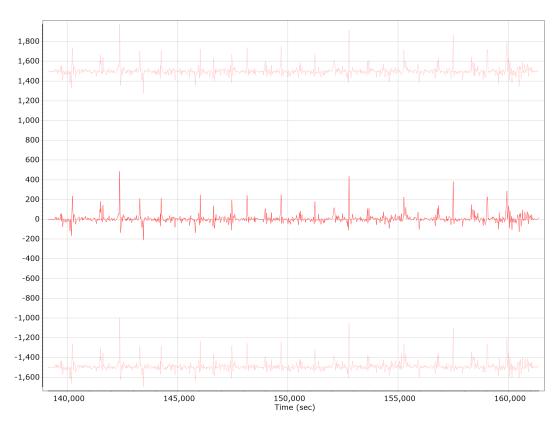
Forward Processed Estimated Errors, Reference Frame

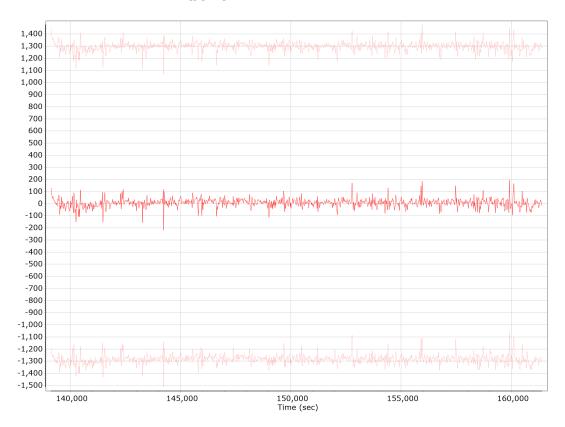

Accelerometer Bias (micro-g)

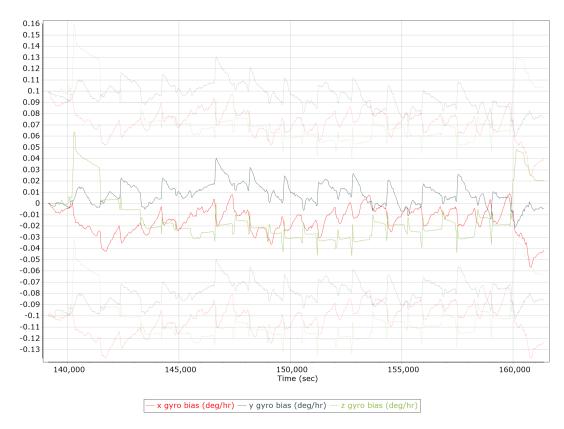

X Accelerometer Bias (micro-g)

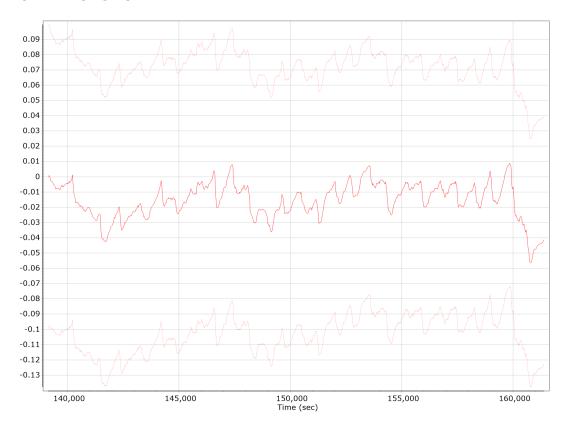

Y Accelerometer Bias (micro-g)

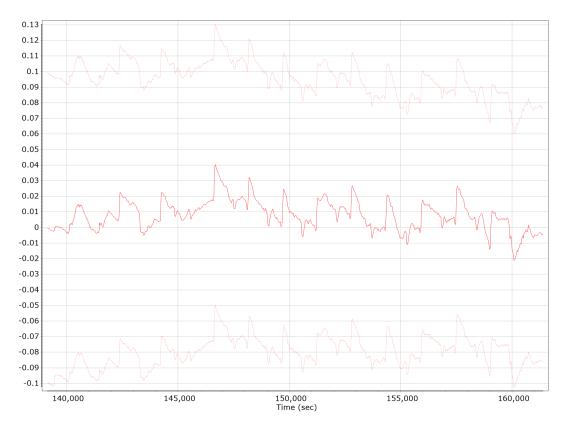
Z Accelerometer Bias (micro-g)

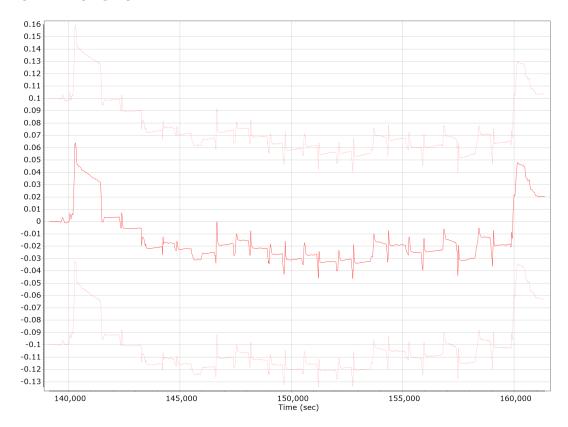

Accelerometer Scale Error (ppm)

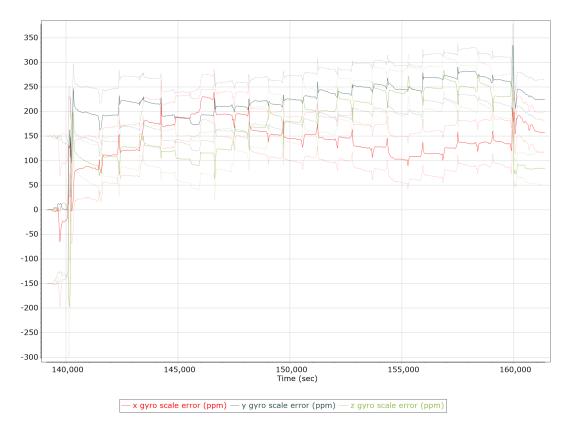

X Accelerometer Scale Error (ppm)


Y Accelerometer Scale Error (ppm)

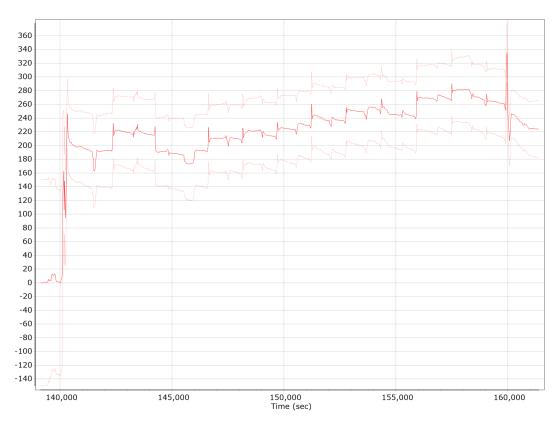

Z Accelerometer Scale Error (ppm)

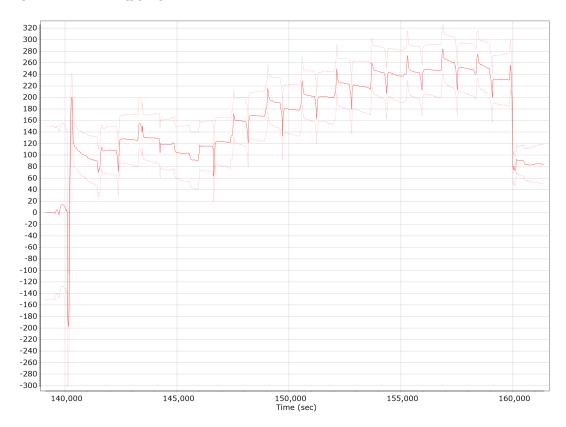

Gyro Bias (deg/h)


X Gyro Bias (deg/h)

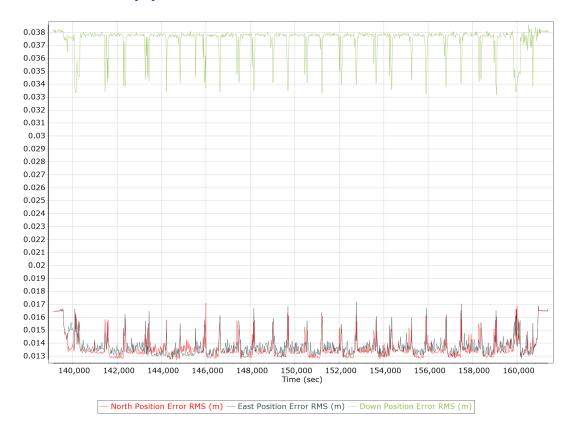

Y Gyro Bias (deg/h)

Z Gyro Bias (deg/h)

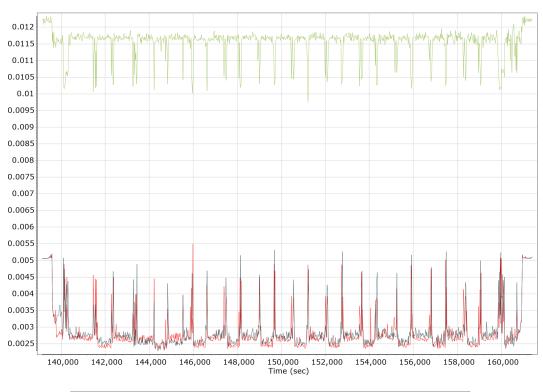

Gyro Scale Error (ppm)


X Gyro Scale Error (ppm)

Y Gyro Scale Error (ppm)

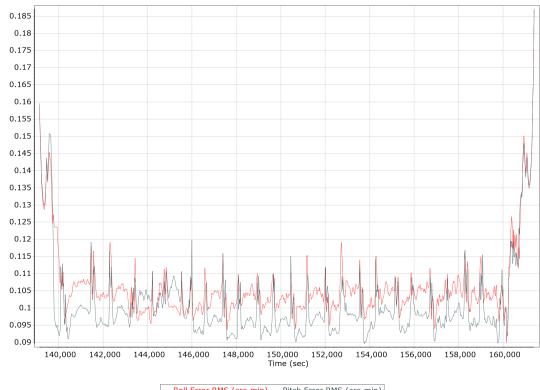


Z Gyro Scale Error (ppm)

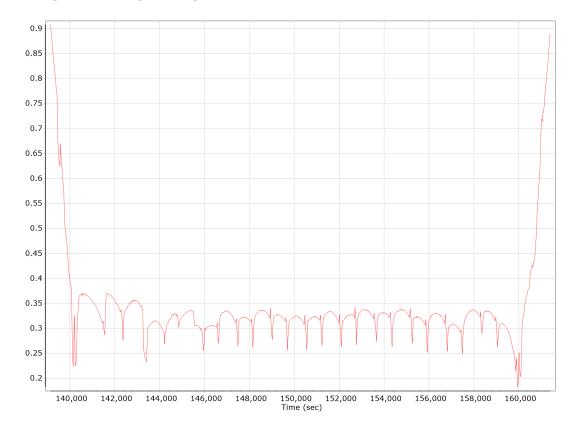


Smoothed Performance Metrics

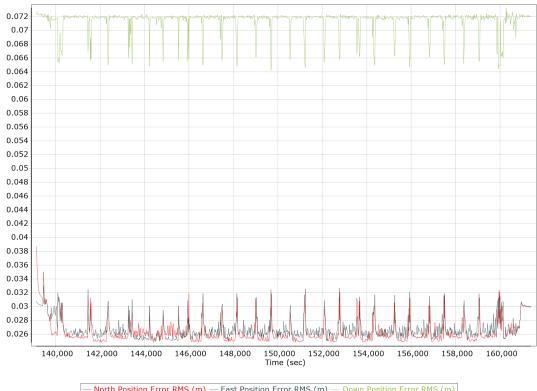
Position Error RMS (m)



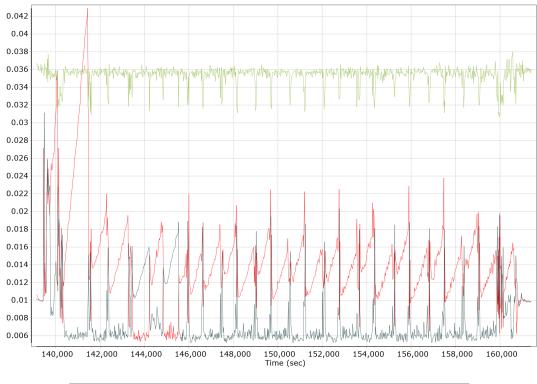
Velocity Error RMS (m/s)


— North Velocity Error RMS (m/s) — East Velocity Error RMS (m/s) — Down Velocity Error RMS (m/s)

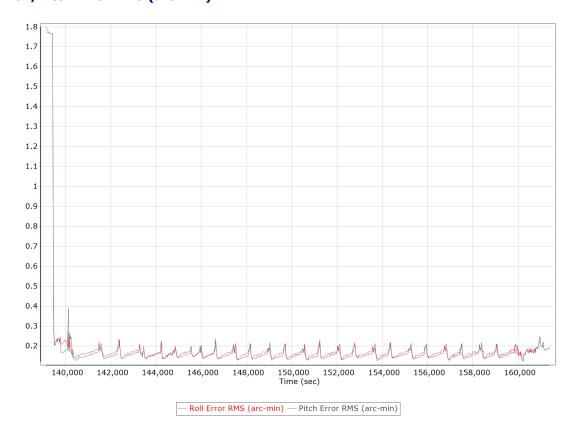
Roll/Pitch Error RMS (arc-min)


Roll Error RMS (arc-min) — Pitch Error RMS (arc-min)

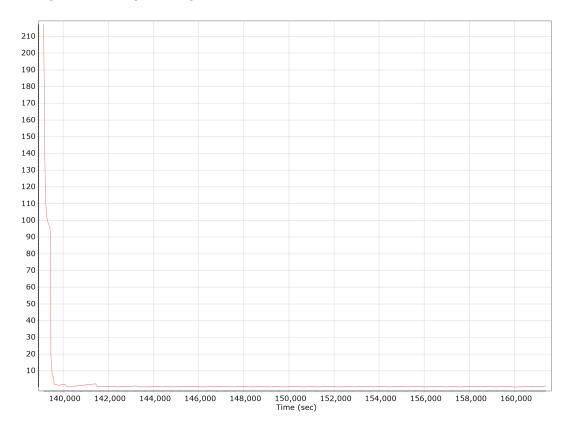
Heading Error RMS (arc-min)


Forward Processed Performance Metrics

Position Error RMS (m)

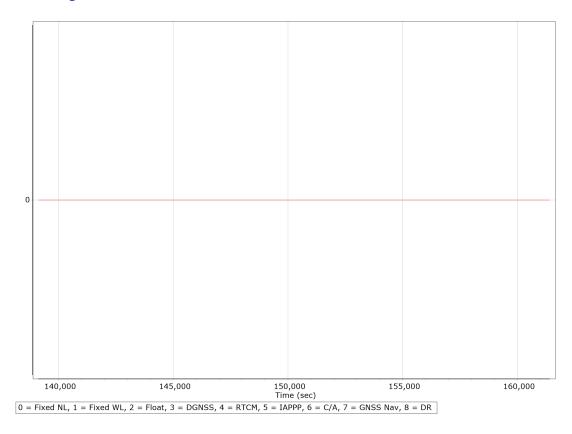

— North Position Error RMS (m) — East Position Error RMS (m) — Down Position Error RMS (m)

Velocity Error RMS (m/s)

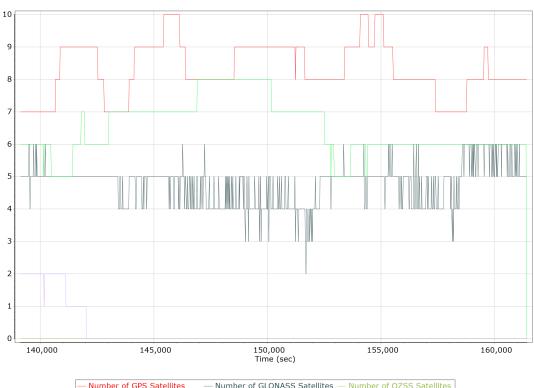


— North Velocity Error RMS (m/s) — East Velocity Error RMS (m/s) — Down Velocity Error RMS (m/s)

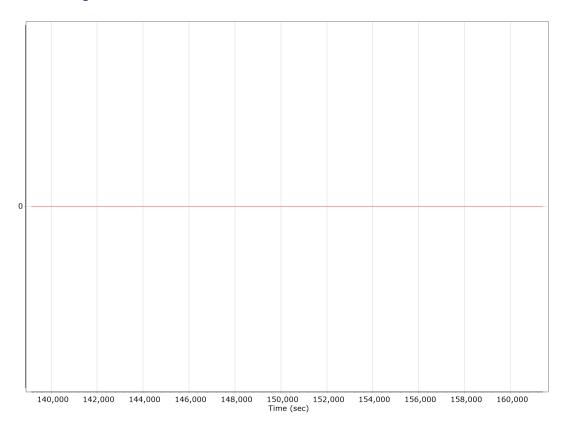
Roll/Pitch Error RMS (arc-min)



Heading Error RMS (arc-min)



Forward Processed Solution Status


Processing Mode

Number of Satellites

Baseline Length

General Information

Mission Information

Project name	04122022A_3062	
Processing date	2022-04-13 16:31:37	
Mission date	2022-04-12 13:03:42	
Mission duration	05:01:14.285	
Processing mode	IN-Fusion PP-RTX	

Rover Hardware Information

Product	POS AV 610 VER6 HW2.5-12
Serial number	S/N8708
IMU type	57
Receiver type	BD982
Antenna type	Bilinmeyen harici

Project File List

Rover Data Files

File name	File type
220412_130323_INS-GPS_1.raw	POS Data

Input Files

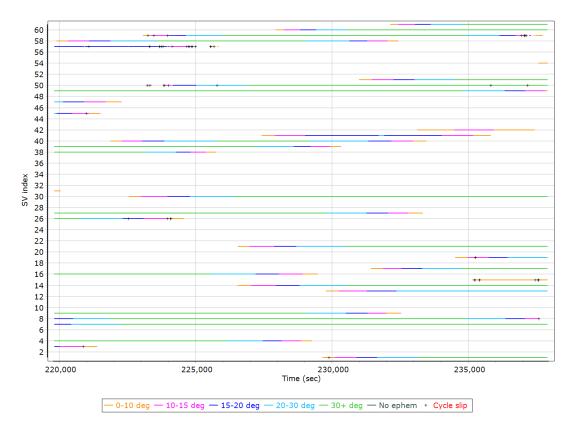
File Name	File Type	
Ephm1020.22g	GLONASS Broadcast Ephemeris	
Ephm1020.22n	GPS Broadcast Ephemeris	

Output Files

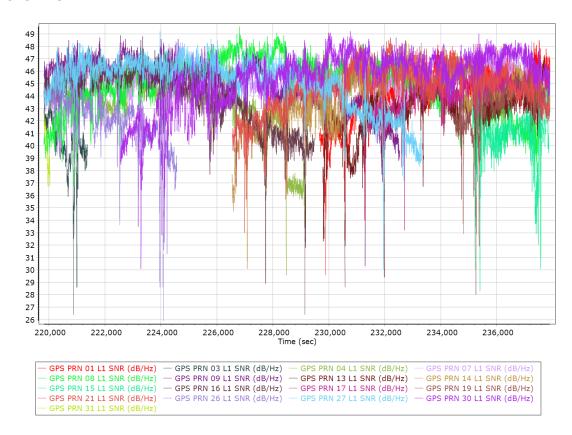
Filename	File type	
sbet_04122022A_3062.out	SBET Trajectory File	

Rover Data Summary

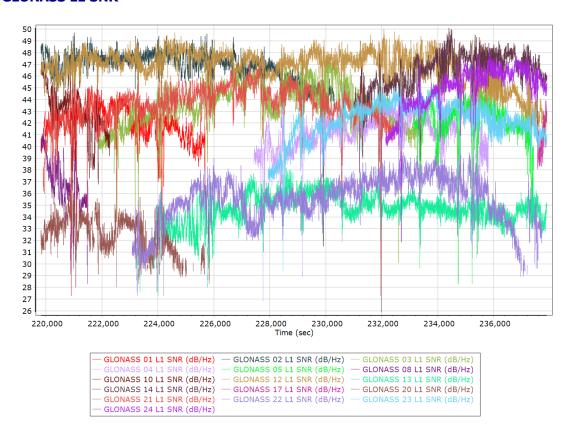
First raw data file	220412_130323_INS-GPS_1.raw		
Last raw data file	220412_130323_INS-GPS_1.raw		
Start GPS week	2205		
Start time	219803.592 (4/12/2022 1:03:23 PM)		
End time	237877.877 (4/12/2022 6:04:37 PM)		
Start of fine alignment	220157.284 (4/12/2022 1:09:17 PM)		
Available subsystems	Primary GNSS, Gimbal, IMU		
POS Event Input	None		
Correction data	None		
IMU Installation Lever Arms & Mounting Angles			
Gimbal to IMU lever arm (m)	0.000	0.000	0.000
Gimbal to IMU mounting angles (deg)	0.000	0.000	0.000
Gimbal to Primary GNSS lever arm (m)	0.142 -0.236 -1.269		
Gimbal to Primary GNSS lever arm std dev (m)	-1.000		
Aircraft to Reference mounting angles (deg)	0.000 0.000 0.000		

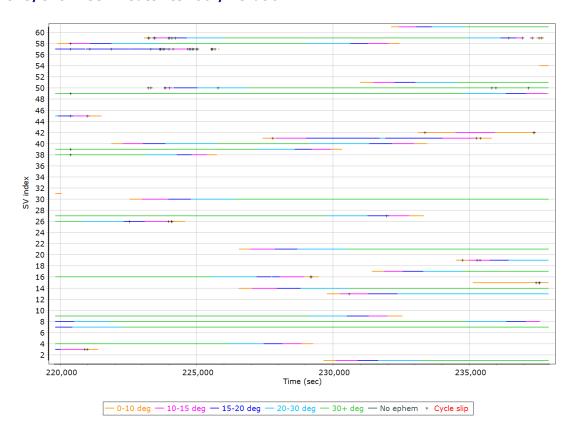

Rover Data QC

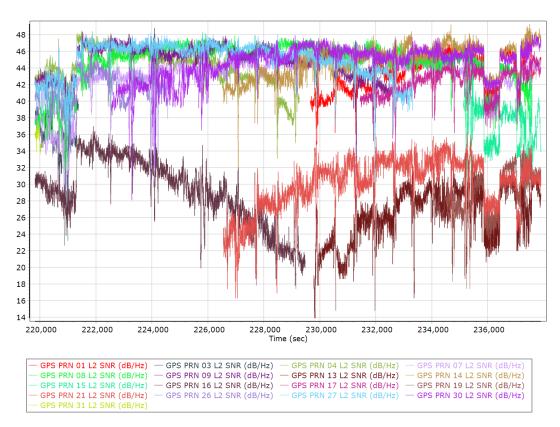
Raw IMU Import QC Summary

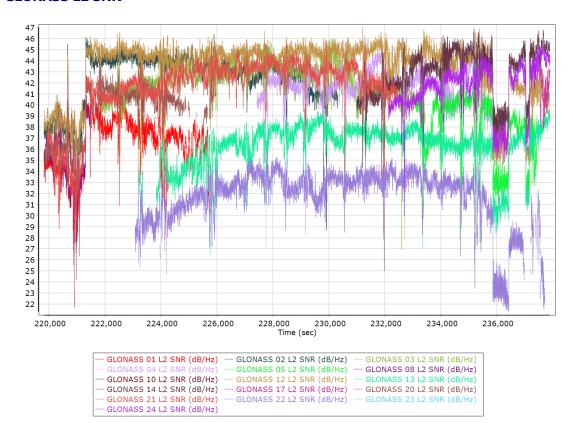

IMU data input file	imu_Mission 1.dat	
IMU data check log file	imudt_04122022A_3062.log	
IMU Records Processed	3614360	
Termination Status	Normal	
IMU Anomalies	0	

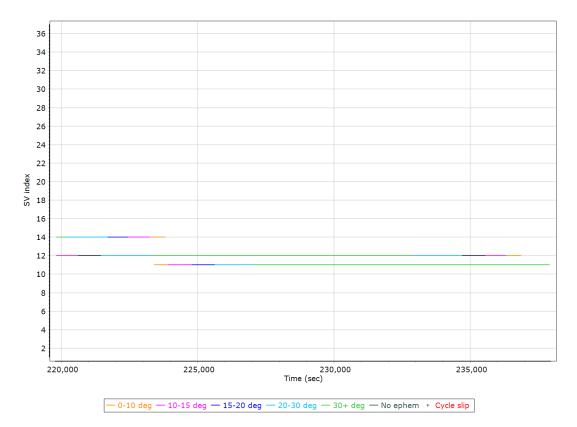
Primary Observables & Satellite Data

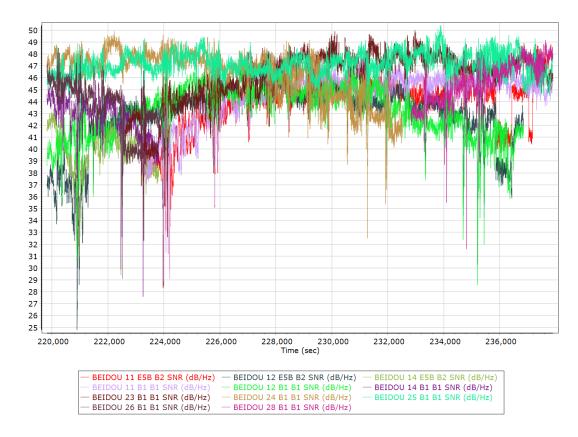

GPS/GLONASS L1 Satellite Lock/Elevation

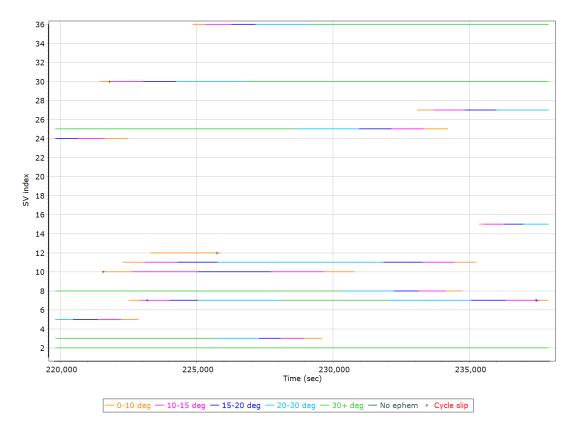

GPS L1 SNR

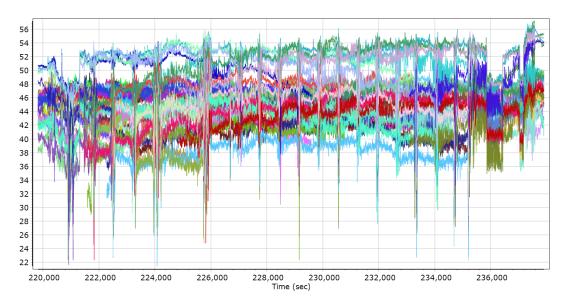

GLONASS L1 SNR

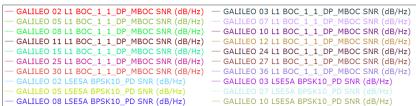

GPS/GLONASS L2 Satellite Lock/Elevation


GPS L2 SNR

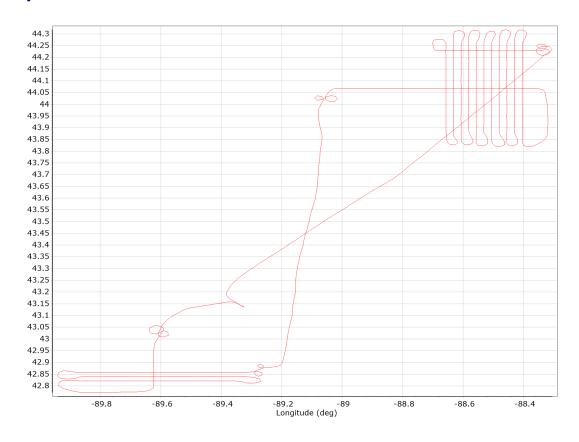

GLONASS L2 SNR

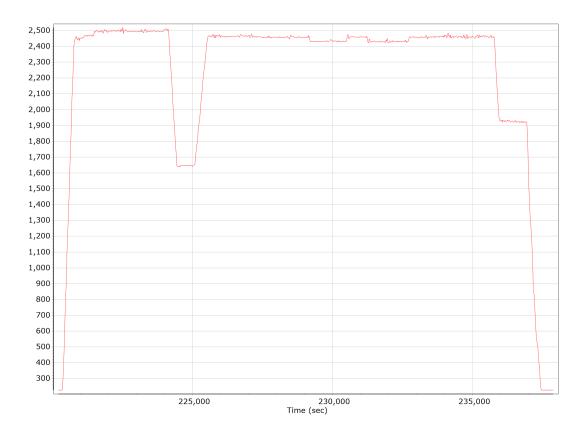

BEIDOU Satellite Lock/Elevation


BEIDOU SNR

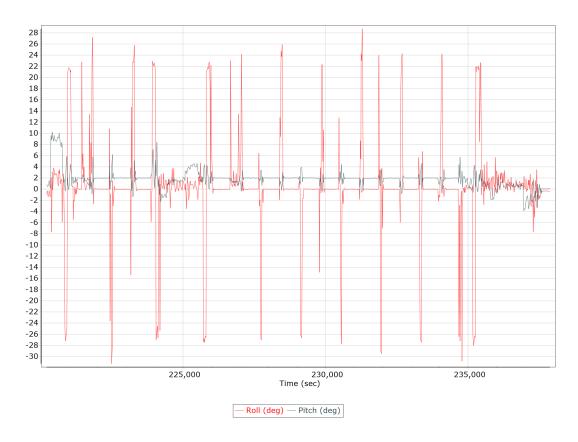


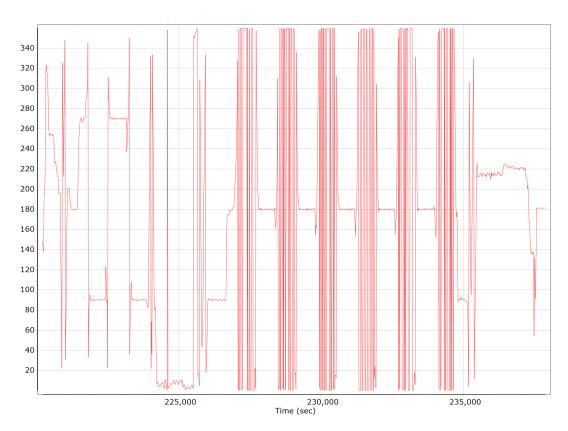
GALILEO Satellite Lock/Elevation

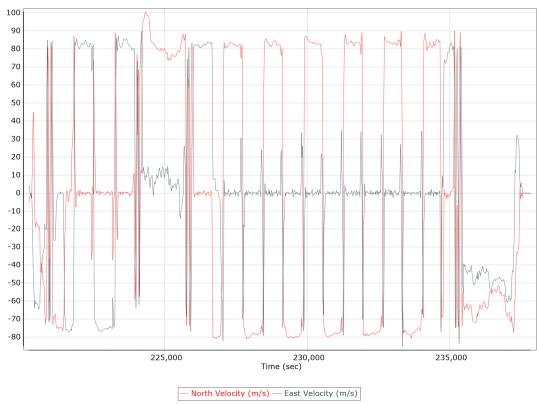

GALILEO SNR

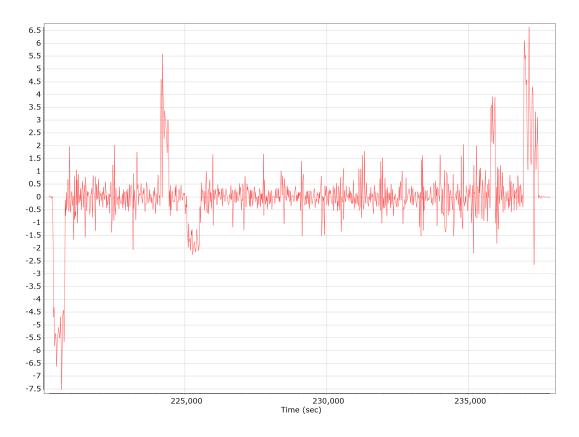


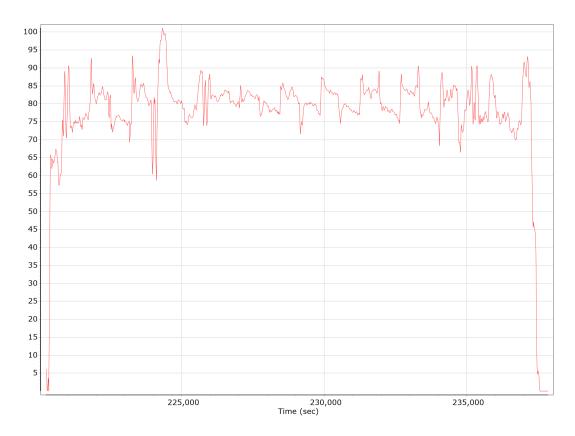
Smoothed Trajectory Information

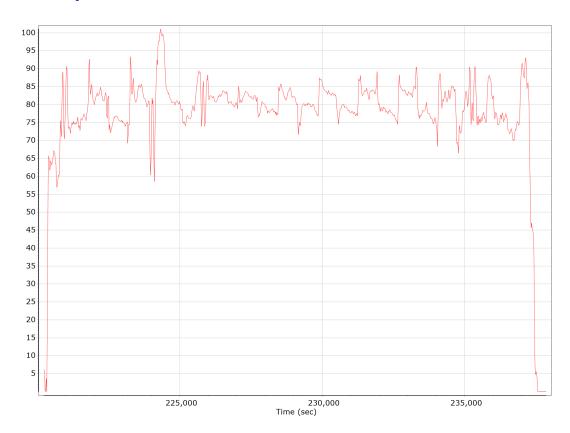

Top View


Altitude

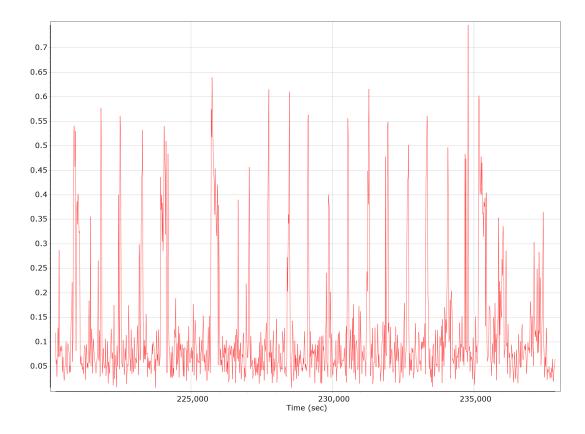

Roll/Pitch

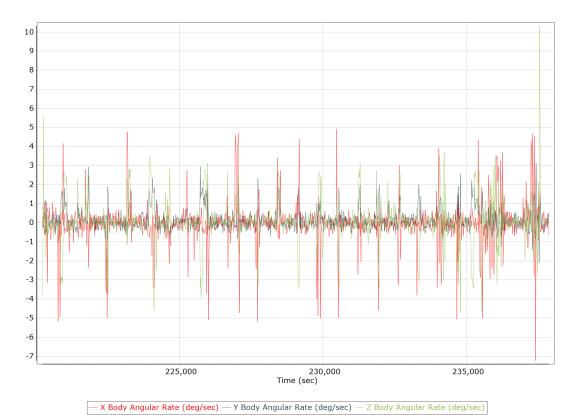

Heading


North/East Velocity

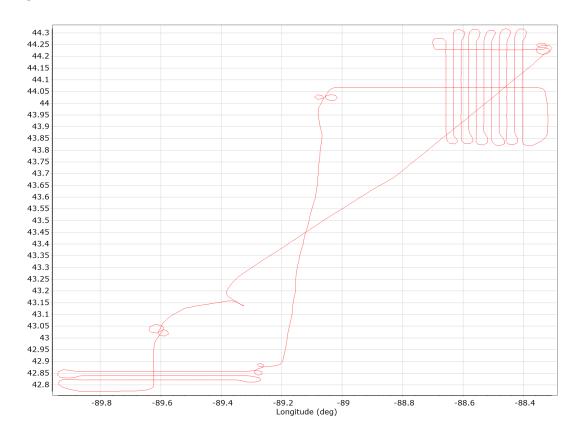

Down Velocity


Total Speed

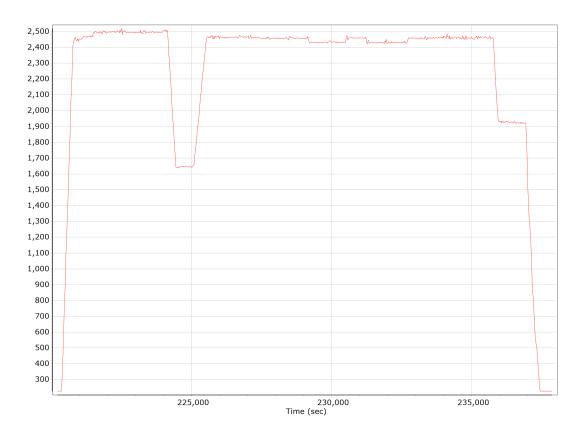

Ground Speed


Body Acceleration

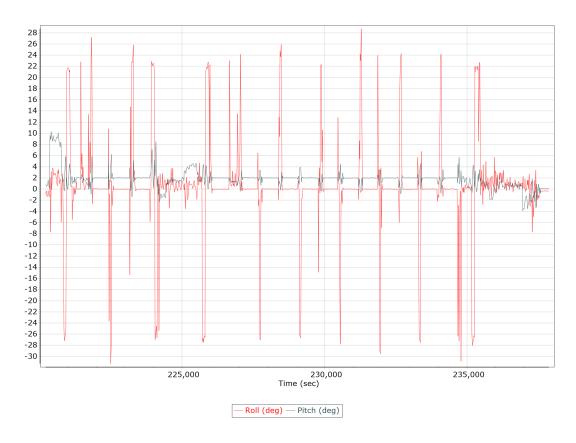
Total Body Acceleration

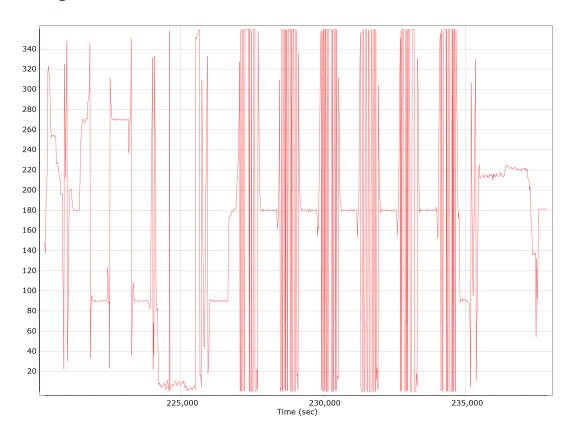


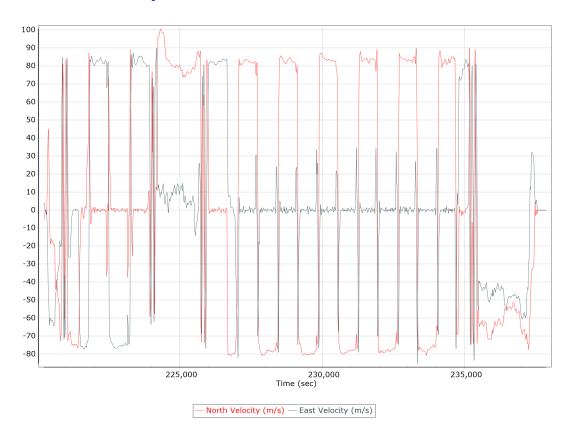
Body Angular Rate

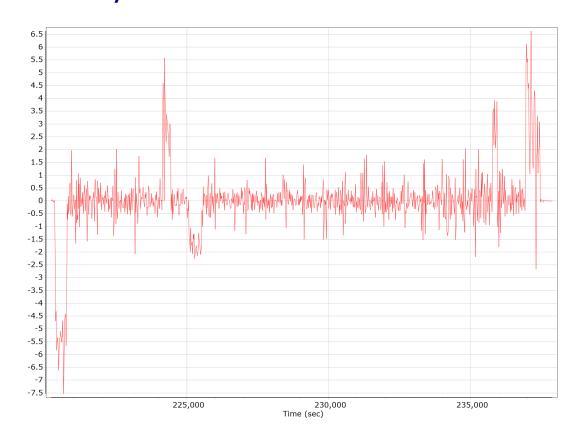


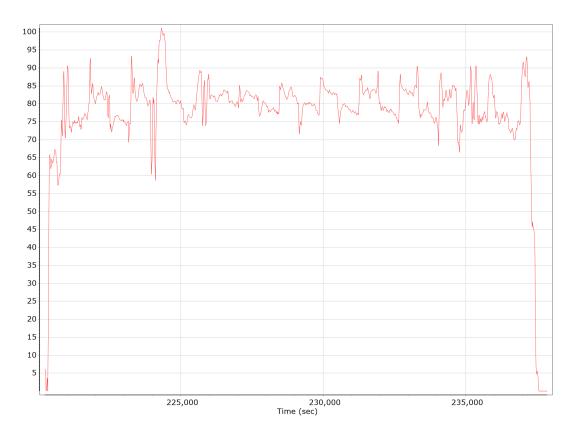
Forward Processed Trajectory Information

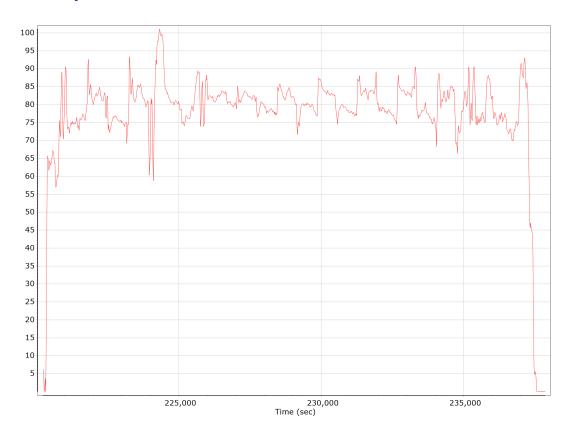

Top View

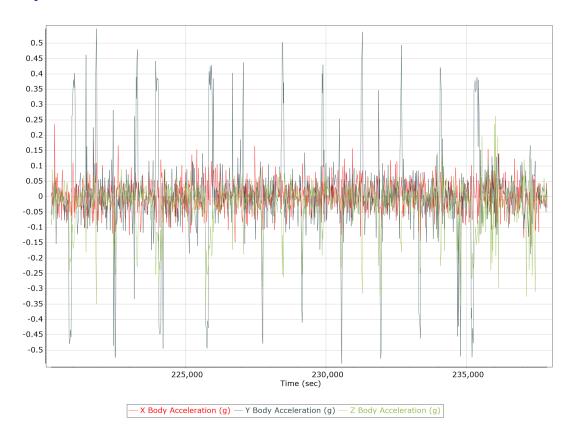

Altitude

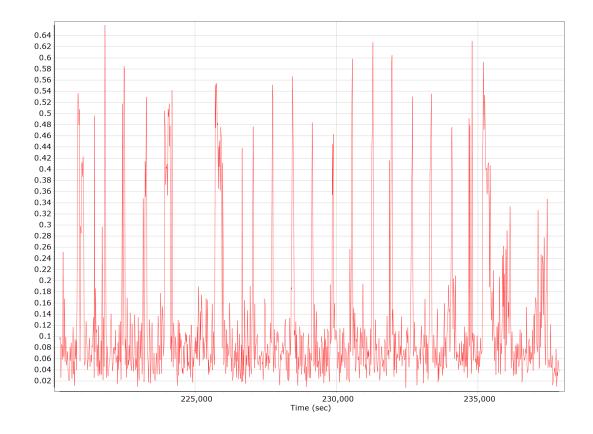

Roll/Pitch


Heading


North/East Velocity


Down Velocity

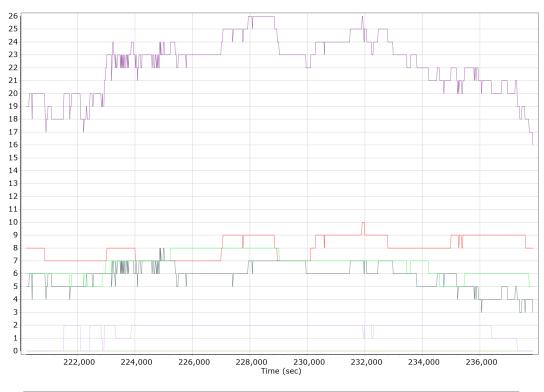

Total Speed


Ground Speed

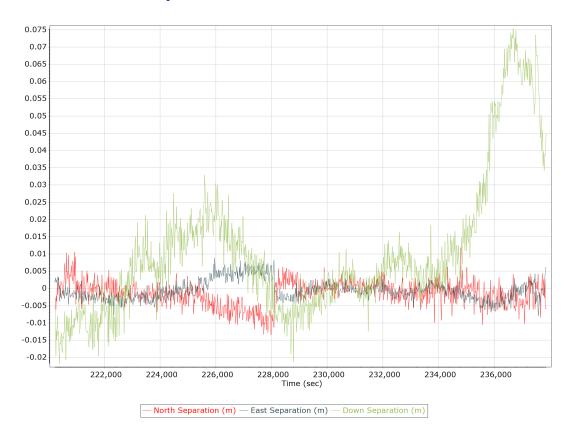
Body Acceleration

Total Body Acceleration

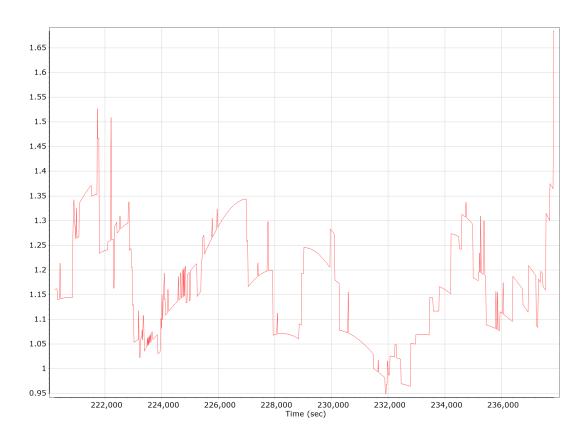
Body Angular Rate

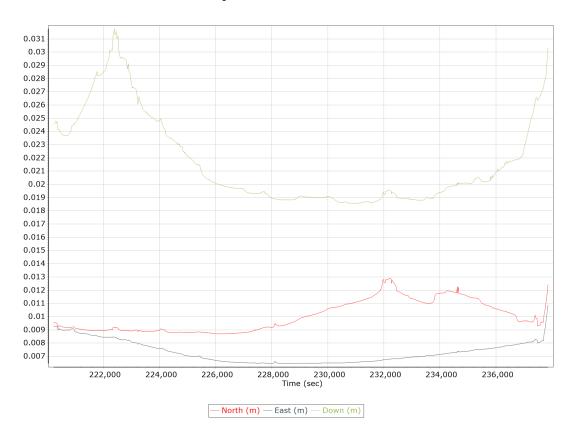


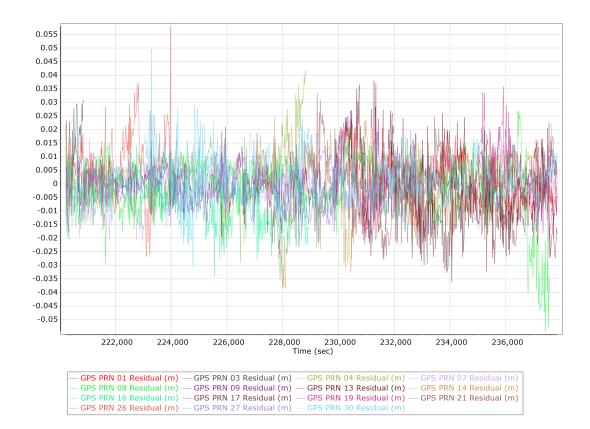
GNSS QC


GNSS QC Statistics

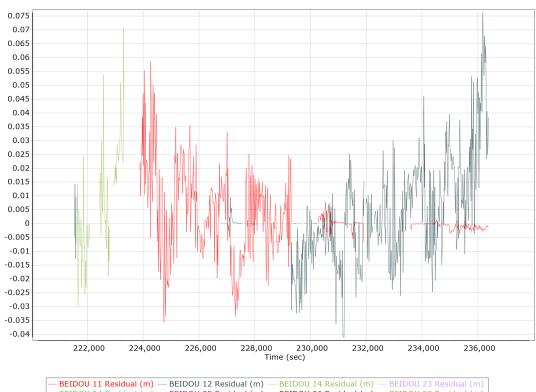
Statistics	Min	Max	Mean
Baseline length (km)	0.00	0.00	
Number of GPS SV	4	10	8
Number of GLONASS SV	0	8	6
Number of QZSS SV	0	0	0
Number of BEIDOU SV	0	2	2
Number of GALILEO SV	5	8	7
Total number of SV	14	26	22
PDOP	0.95	1.82	1.17
QC Solution Gaps	1.00	1.00	
Solution Type	Fixed	Float	No solution
Epoch (sec)	18028.00	0.00	2.00
Percentage	99.99	0.00	0.01


Num SVs in solution


Forward/Reverse Separation


PDOP

Estimated Position Accuracy

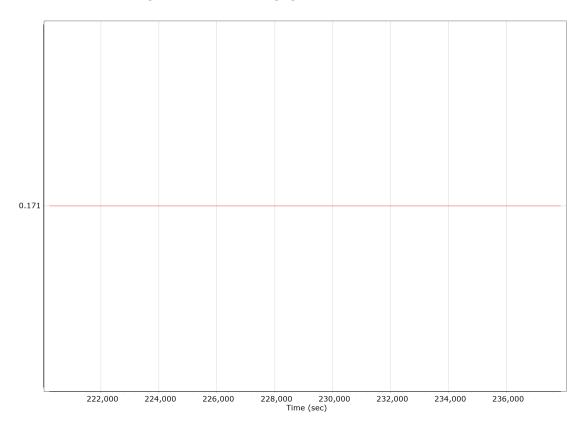

GPS Residuals

GLONASS Residuals

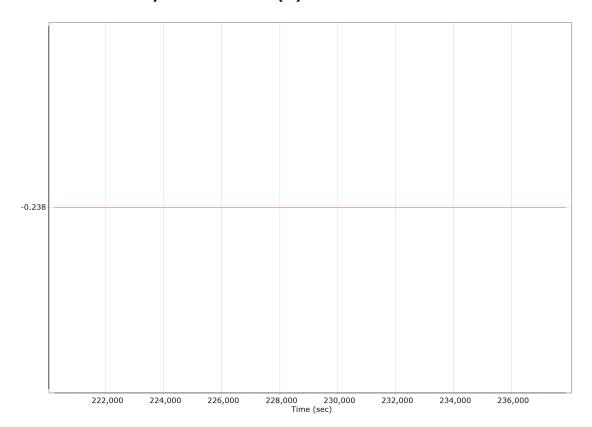
BEIDOU Residuals

GALILEO Residuals

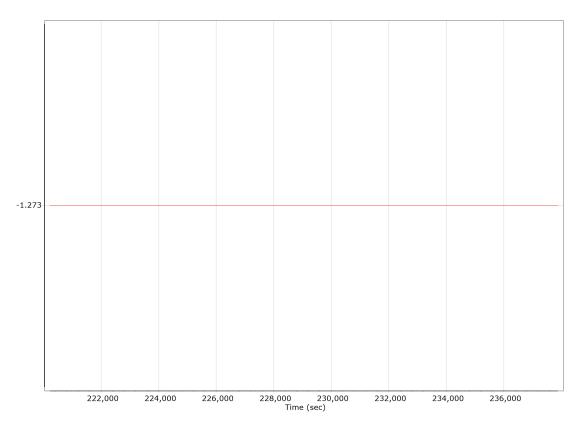
- GALILEO 03 Residual (m) — GALILEO 05 Residual (m) - GALILEO 11 Residual (m) — GALILEO 15 Residual (m) - GALILEO 27 Residual (m) — GALILEO 30 Residual (m) GALILEO 36 Residual (m)

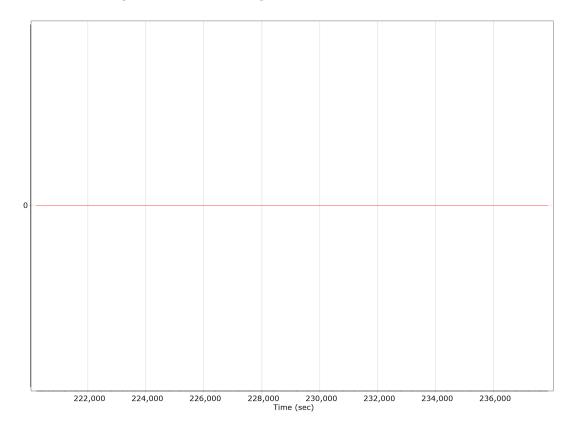

GNSS-Inertial Processor Configuration

Processing mode	IN-Fusion PP-RTX		
Stabilized mount	True		
Processing start time	219804.000 (4/12/2022 1:03:24 PM)		
Processing end time	237879.000 (4/12/2022 6:04:39 PM)		
Initial attitude source	Real-Time VNAV/RNAV Attitude		
IMU Sensor Context	Processing with Onboard IMU		
Gimbal to IMU lever arm (m)	0.000	0.000	0.000
Gimbal to IMU mounting angles (deg)	0.000	0.000	0.000
Gimbal to Primary GNSS lever arm (m)	0.171	-0.238	-1.273
Gimbal to Primary GNSS lever arm std dev (m)	0.030	0.030	0.030
Aircraft to Reference mounting angles (deg)	0.000	0.000	0.000

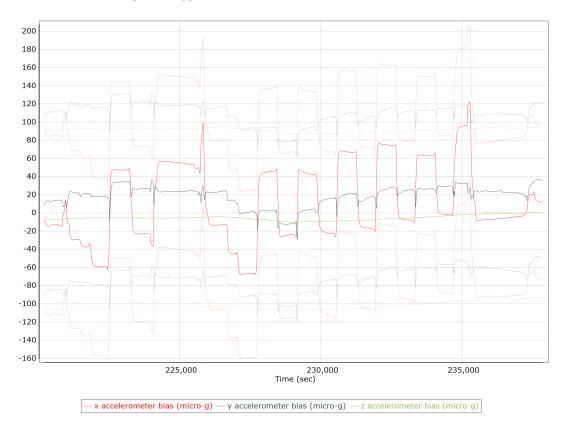

Calibrated Installation Parameters

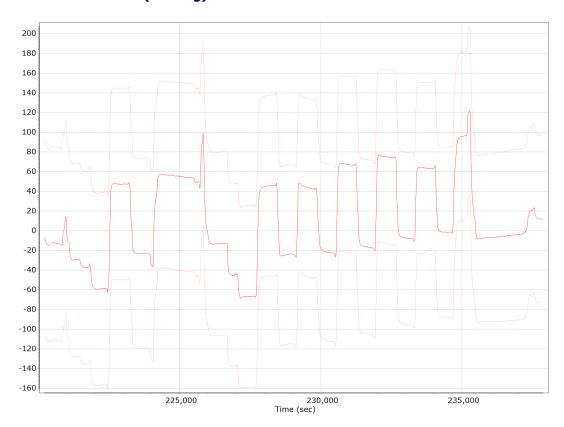
Reference-Primary GNSS Lever Arm (m)


X Reference-Primary GNSS Lever Arm (m)

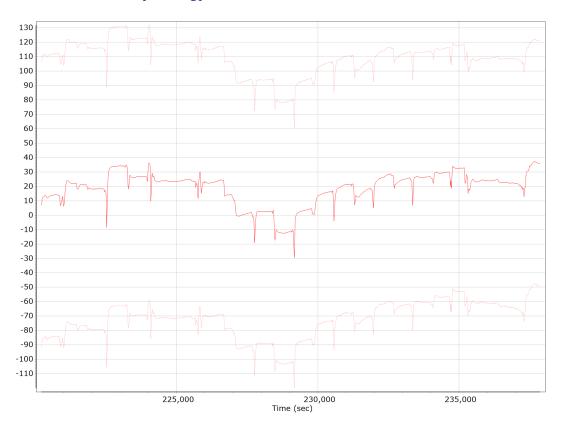

Y Reference-Primary GNSS Lever Arm (m)

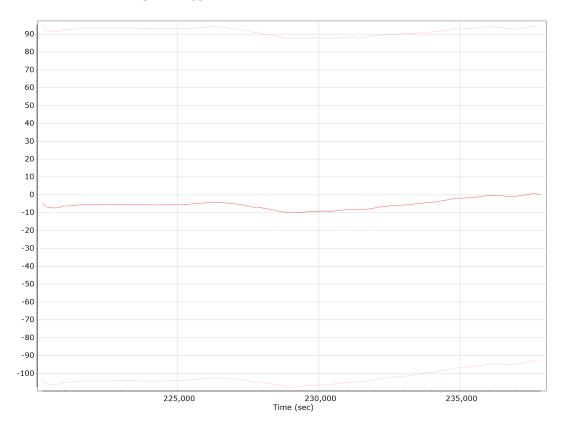
Z Reference-Primary GNSS Lever Arm (m)


Reference-Primary GNSS Lever Arm Figure of Merit


IN-Fusion QC

Forward Processed Estimated Errors, Reference Frame

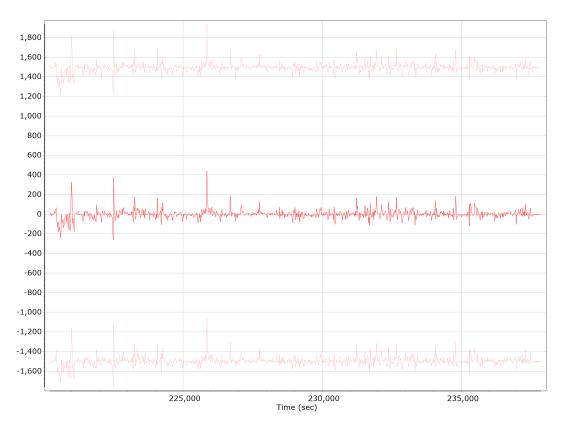

Accelerometer Bias (micro-g)


X Accelerometer Bias (micro-g)

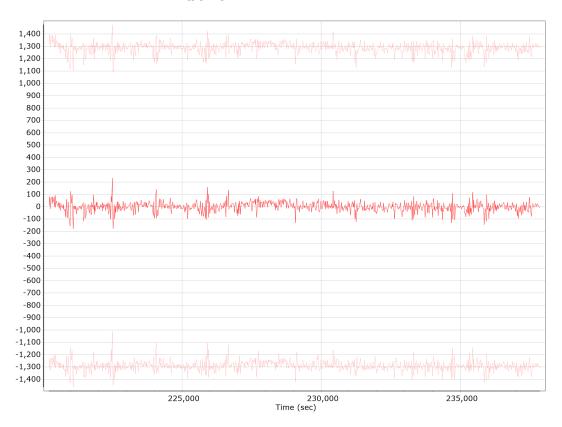
Y Accelerometer Bias (micro-g)

Z Accelerometer Bias (micro-g)

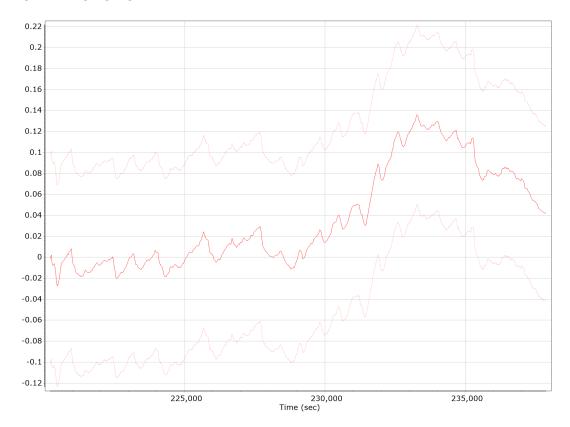
Accelerometer Scale Error (ppm)

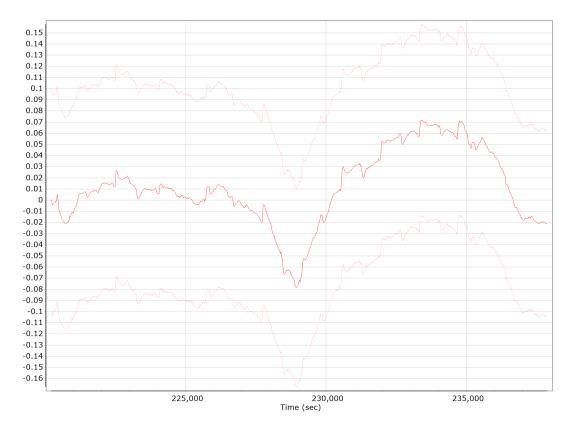


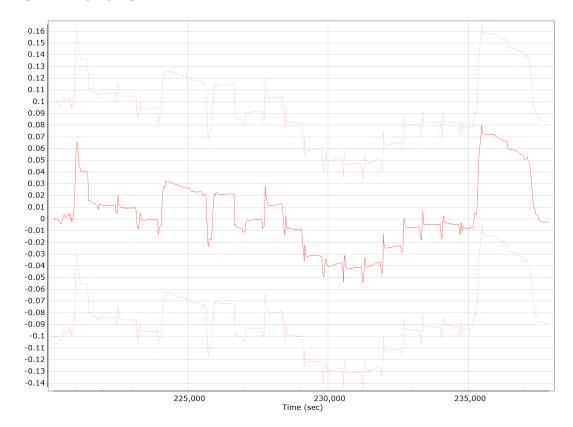
x accelerometer scale error (ppm) y accelerometer scale error (ppm) z accelerometer scale error (ppm)


X Accelerometer Scale Error (ppm)

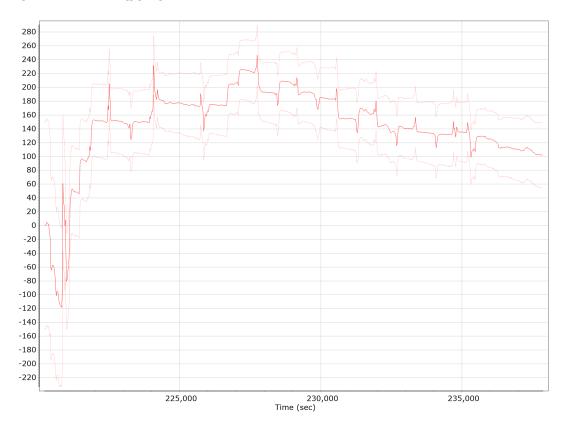
Y Accelerometer Scale Error (ppm)

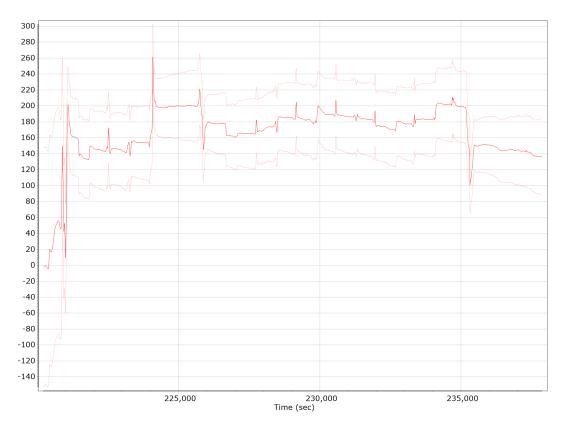

Z Accelerometer Scale Error (ppm)

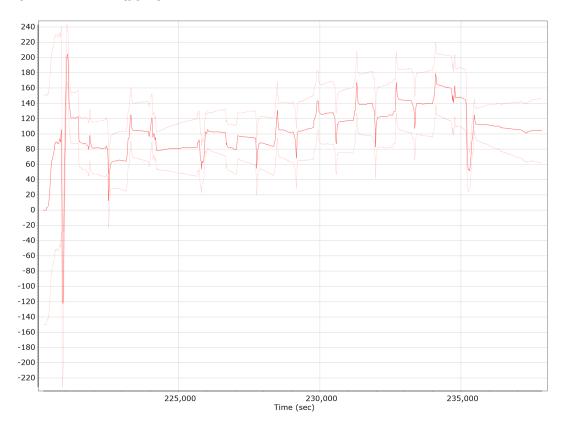

Gyro Bias (deg/h)


X Gyro Bias (deg/h)

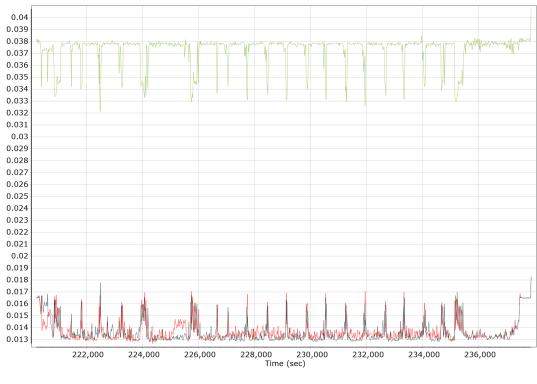

Y Gyro Bias (deg/h)


Z Gyro Bias (deg/h)

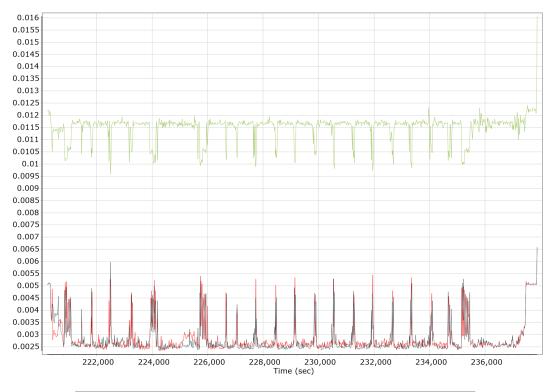

Gyro Scale Error (ppm)


X Gyro Scale Error (ppm)

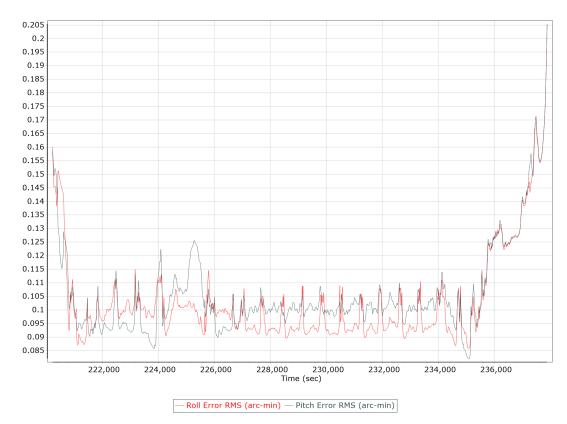
Y Gyro Scale Error (ppm)



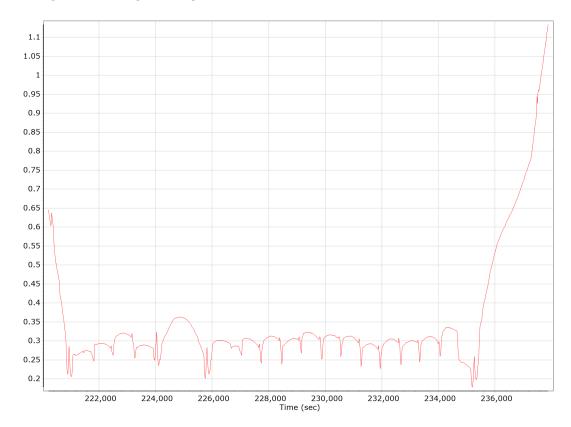
Z Gyro Scale Error (ppm)


Smoothed Performance Metrics

Position Error RMS (m)

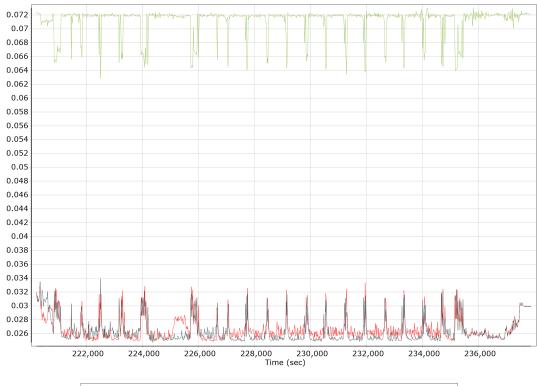

— North Position Error RMS (m) — East Position Error RMS (m) — Down Position Error RMS (m)

Velocity Error RMS (m/s)

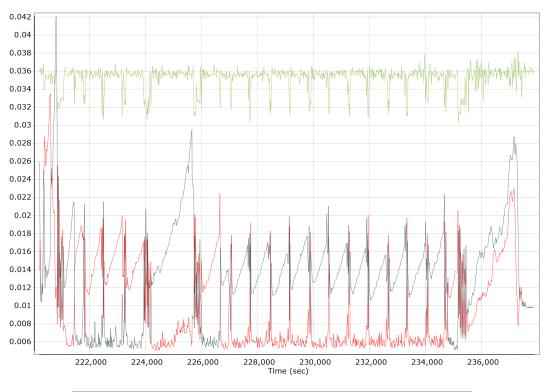


— North Velocity Error RMS (m/s) — East Velocity Error RMS (m/s) — Down Velocity Error RMS (m/s)

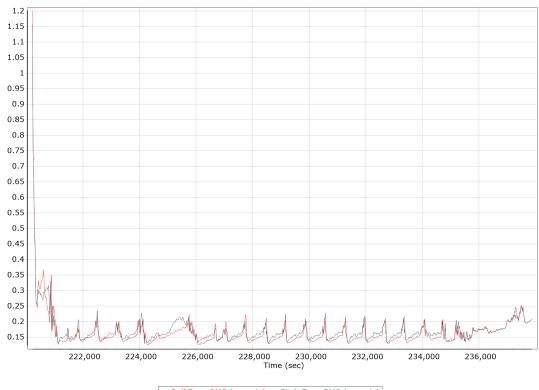
Roll/Pitch Error RMS (arc-min)



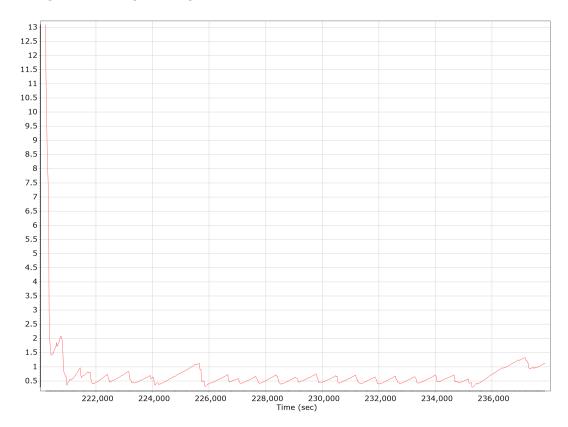
Heading Error RMS (arc-min)


Forward Processed Performance Metrics

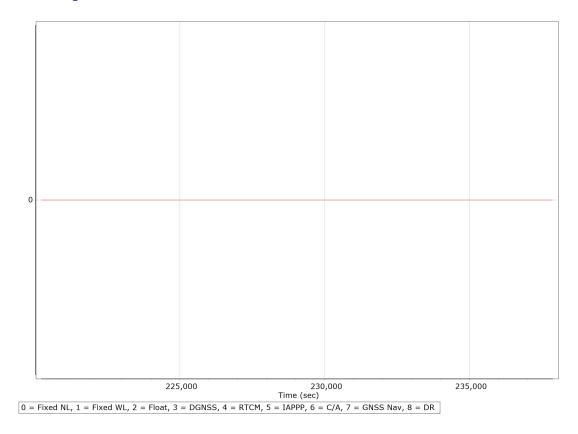
Position Error RMS (m)


— North Position Error RMS (m) — East Position Error RMS (m) — Down Position Error RMS (m)

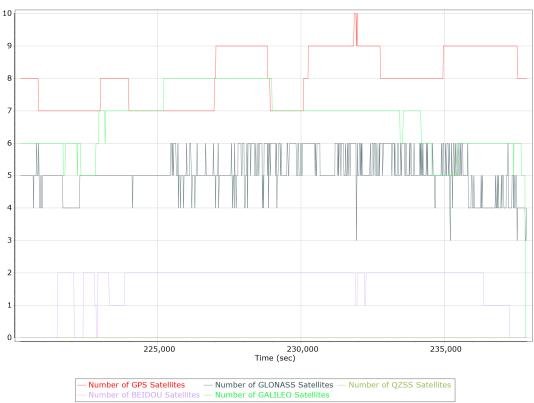
Velocity Error RMS (m/s)


— North Velocity Error RMS (m/s) — East Velocity Error RMS (m/s) — Down Velocity Error RMS (m/s)

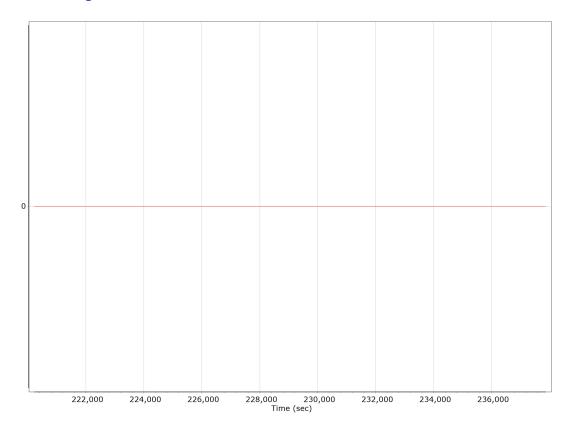
Roll/Pitch Error RMS (arc-min)


— Roll Error RMS (arc-min) — Pitch Error RMS (arc-min)

Heading Error RMS (arc-min)



Forward Processed Solution Status


Processing Mode

Number of Satellites

Baseline Length

